Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (7): 1225-1236    DOI: 10.3785/j.issn.1008-973X.2019.07.001
机械与能源工程     
含沟槽湿式离合器接合特性数值与试验研究
杨辰龙(),吴鹏辉(),商晓波,王赵帅
浙江大学 机械工程学院,浙江 杭州 310027
Simulation and experimental study of engagement process with groove consideration
Chen-long YANG(),Peng-hui WU(),Xiao-bo SHANG,Zhao-shuai WANG
College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3693 KB)   HTML
摘要:

为了研究工况参数对湿式离合器接合特性的影响规律,基于Navier-Stokes方程、KE粗糙接触理论和传热理论,针对含沟槽湿式离合器建立接合特性综合数值模型. 利用自主研制的离合器试验装置,针对接合压力、润滑油(ATF)温度、相对转速、渗透性和沟槽等影响因素进行正交试验. 结果表明,接合压力不仅影响接合时间且对扭矩有影响,压盘接触瞬间的扭矩抖动取决于接合压力稳定性,接合完成瞬间的扭矩抖动是由动静摩擦系数差异造成的;润滑油温升高,黏度降低使粗糙峰接触延迟造成接合时间增长,接合扭矩减小;转速越高,接合时间越长;渗透性越高,油膜厚度下降越快,接合响应速度越快;沟槽宽度越大,接合扭矩的幅值越小,接合时间越长. 初始油膜厚度越大,接合初始阶段的油膜剪切扭矩越小.

关键词: 湿式离合器接合特性粗糙接触传热扭矩抖动    
Abstract:

A comprehensive numerical model was established based on the Navier-Stokes equations, KE rough contact mechanics and heat transfer theory with grooves consideration in order to analyze the effect of the operating conditions on the engagement behavior of wet clutches. The orthogonal experiments were conducted to analyze the effect of the operating parameters such as applied pressure, the temperature of automatic transmission fluid (ATF), the relative rotation speed, the permeability and the grooves based on the independently developed experimental setup. Results show that the applied pressure not only affects the engagement time, but also the engagement torque. The first torque judder that appears at the moment of the piston touching the plates depends on the stability of the applied pressure. The second torque judder that appears at the end of the engagement process is caused by the difference of dynamic and static friction coefficient. The increase of the temperature of ATF makes the dynamic viscosity decrease, which delays the rough contact and engagement process. The hydraulic torque decreases accordingly. The higher the relative rotation speed is, the longer the engagement time is. The higher the permeability of the friction material is, the faster the decrease of the film thickness and the engagement response is. The larger the groove width is, the smaller the engagement torque is, the longer the engagement time is. The larger the initial film thickness is, the smaller the shearing torque is.

Key words: wet clutch    engagement behavior    rough contact    heat transfer    torque judder
收稿日期: 2018-06-22 出版日期: 2019-06-25
CLC:  U 463  
作者简介: 杨辰龙(1974—),男,副教授,从事先进测试技术研究. orcid.org/0000-0001-8720-5575. E-mail: yclzju@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨辰龙
吴鹏辉
商晓波
王赵帅

引用本文:

杨辰龙,吴鹏辉,商晓波,王赵帅. 含沟槽湿式离合器接合特性数值与试验研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1225-1236.

Chen-long YANG,Peng-hui WU,Xiao-bo SHANG,Zhao-shuai WANG. Simulation and experimental study of engagement process with groove consideration. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1225-1236.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.07.001        http://www.zjujournals.com/eng/CN/Y2019/V53/I7/1225

图 1  湿式离合器的结构示意图
图 2  平均油膜厚度示意图
图 3  摩擦片表面粗糙接触分析模型
图 4  湿式离合器径向沟槽示意图
参数 数值 参数 数值
${R_{\rm{i}}}$ 0.378 m ${E_2}$ 2.06×109 MPa
${R_{\rm{o}}}$ 0.421 m ${\nu _1}$ 0.3
$d$ 0.5 mm ${\nu _2}$ 0.4
${E_1}$ 1.059×108 MPa
表 1  大尺寸湿式离合器摩擦元件试验件参数表
参数 数值 参数 数值
$\mu $ 0.086 Pa·s B 0.2 mm
${h_{\rm{o}}}$ 2.54×10-5 ${\sigma _{\rm{s}}}$ 1.012×10-6
${h_{\rm{g}}}$ 4×10-4 ${\sigma _{\rm{f}}}$ 8.32×10-6
$\rho $ 850 kg/m3
表 2  湿式离合器动态接合仿真及试验运行工况参数表
图 5  红外温度传感器测试方法
图 6  湿式离合器接合过程温度变化试验曲线
图 7  湿式离合器接合过程中的温度变化仿真曲线
图 8  湿式离合器接合特性自动化试验系统
图 9  湿式离合器自动化试验系统原理示意图
图 10  湿式离合器冷却润滑系统
图 11  湿式离合器接合压力试验曲线(1.1、1.3和1.5 MPa)
图 12  不同压力下的接合特性仿真曲线(1.1、1.3和1.5 MPa)
图 13  不同稳定接合压力下的接合过程试验曲线(1.1、1.3和1.5 MPa)
图 14  不同PID参数下的接合过程试验曲线
图 15  稳定接合压力与接合扭矩关系的试验曲线
图 16  不同润滑油温度下的接合过程仿真曲线(65、50和35 °C)
图 17  不同润滑油温度下的接合过程试验曲线(65、50和35 °C)
图 18  不同初始转速接合过程压力试验曲线
图 19  不同初始转速下的接合扭矩变化仿真曲线
图 20  不同初始转速下的接合扭矩变化试验曲线
图 21  不同初始转速下的瞬时滑摩功率试验曲线
图 22  不同渗透性参数下的油膜变化仿真曲线
图 23  不同渗透参数接合扭矩仿真曲线
图 24  不同渗透参数接合扭矩试验曲线
图 25  不同沟槽宽度下的接合扭矩仿真曲线
图 26  不同沟槽宽度下的接合特性试验曲线
图 27  定间隙下油膜剪切力形成黏性扭矩试验曲线
1 张志刚, 周晓军, 沈路, 等 湿式离合器动态接合特性的仿真与试验[J]. 中国公路学报, 2010, 23 (03): 115- 120
ZHANG Zhi-gang, ZHOU Xiao-jun, SHEN Lu, et al Simulation and experiment on dynamic engagement characteristics of wet clutch[J]. China Journal of Highway and Transport, 2010, 23 (03): 115- 120
doi: 10.3969/j.issn.1001-7372.2010.03.018
2 张志刚. 关于湿式离合器几个工作特性研究[D]. 杭州: 浙江大学, 2010.
3 陈漫, 马彪, 李国强, 等 多片湿式离合器接合过程转矩特性研究[J]. 华中科技大学学报: 自然科学版, 2014, 42 (5): 34- 39
CHEN Man, MA Biao, LI Guo-qiang, et al Study on torque characteristics of multi-plate wet clutches during engagement[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42 (5): 34- 39
4 马彪, 李国强, 李和言, 等 基于改进平均流量模型的离合器接合特性仿真[J]. 吉林大学学报: 工学版, 2014, 44 (6): 1557- 1563
MA Biao, LI Guo-qiang, LI He-yan, et al Simulation of wet clutch engagement characteristics based on advanced average flow model[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44 (6): 1557- 1563
5 LI W, HUANG J, FEI J, et al. Simulation of the engagement of carbon fabric wet clutch: analytical and experimental comparison[J]. Tribology International, 2015, 90: 502-508.
6 LI M, KHONSARI M M, MCCARTHY D M C, et al. Parametric analysis for a paper-based wet clutch with groove consideration[J]. Tribology International, 2014, 80: 222-233.
7 胡宏伟, 王泽湘, 张志刚, 等 湿式离合器接合过程中瞬态温度场的仿真[J]. 中国科技论文, 2015, 10 (04): 467- 470
HU Hong-wei, WANG Ze-xiang, ZHANG Zhi-gang, et al Simulation of transient temperature field of wet clutch engagement[J]. China Sciencepaper, 2015, 10 (04): 467- 470
doi: 10.3969/j.issn.2095-2783.2015.04.020
8 JANG J Y, KHONSARI M M Thermal characteristics of a wet clutch[J]. Journal of Tribology-Transactions of the ASME, 1999, 121 (3): 610- 617
doi: 10.1115/1.2834111
9 PATIR N, CHENG H S Average flow model for determining effects of 3-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology-Transactions of the ASME, 1978, 100 (1): 12- 17
doi: 10.1115/1.3453103
10 LI W, HUANG J, FEI J, et al Study on tribological properties as a function of operating conditions for carbon fabric wet clutch[J]. Tribology International, 2016, 94: 428- 436
doi: 10.1016/j.triboint.2015.10.015
11 GORDON S. BEAVERS, DANIEL D. JOSEPH boundary conditions at naturally permeable wall[J]. Journal of Fluid Mechanics, 1967, 30 (01): 197- 207
doi: 10.1017/S0022112067001375
12 GREENWOOD J A, WILLIAMSON J B P Contact of nominally flat surfaces[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966, 295 (1442): 300- 319
doi: 10.1098/rspa.1966.0242
13 于向军, 王国强, 王继新, 等 基于接触边界条件的球磨机应力分析及试验[J]. 吉林大学学报: 工学版, 2009, 39 (2): 372- 377
YU Xiang-jun, WANG Guo-qiang, WANG Ji-xin, et al Stress analysis and test of ball mill based on contact boundary conditions[J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39 (2): 372- 377
14 SEPEHRI A, FARHANG K On elastic interaction of nominally flat rough surfaces[J]. Journal of Tribology, 2007, 130 (1): 11014
15 KOGUT L, ETSION I A finite element based elastic-plastic model for the contact of rough surfaces[J]. Tribology Transactions, 2003, 46 (3): 383- 390
doi: 10.1080/10402000308982641
16 高晓敏, 张协平, 吴凡, 等 摩擦片表面沟槽对离合器动态特性影响的研究[J]. 传动技术, 2001, 2001 (03): 10- 13
GAO Xiao-min, ZHANG Xie-ping, WU Fan, et al Research of the friction disk surface groove for influence on the clutch dynamic characteristic[J]. Transmission Technology, 2001, 2001 (03): 10- 13
doi: 10.3969/j.issn.1006-8244.2001.03.003
17 王晓燕, 李杰, 张志凯, 等 离合器摩擦副摩滑过程轴向振动特性研究[J]. 振动与冲击, 2017, 36 (04): 81- 87
WANG Xiao-yan, LI Jie, ZHANG Zhi-kai, et al Axial vibration characteristics of friction disks of clutch on sliding[J]. Journal of Vibration and Shock, 2017, 36 (04): 81- 87
18 廖湘平, 龚国芳, 孙辰晨, 等 基于AMESim的液粘调速离合器动态接合特性研究[J]. 农业机械学报, 2016, 47 (06): 324- 332
LIAO Xiang-ping, GONG Guo-fang, SUN Chen-chen, et al Dynamic engagement performance of hydro-viscous clutch based on AMESim[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47 (06): 324- 332
19 ZHANG Z, SHI X, GUO D Dynamic temperature rise mechanism and some controlling factors of wet clutch engagement[J]. Mathematical Problems in Engineering, 2016, 2016 (05): 1- 12
20 赵家昕, 马彪, 李和言, 等 湿式离合器接合过程中的热弹性稳定性[J]. 吉林大学学报: 工学版, 2015, 45 (01): 22- 28
ZHAO Jia-xin, MA Biao, LI He-yan, et al Thermoelastic stability of wet clutches during engaging process[J]. Journal of Jilin University: Engineering and Technology Edition, 2015, 45 (01): 22- 28
21 CUI J, WANG C, XIE F, et al Numerical investigation on transient thermal behavior of multidisk friction pairs in hydro-viscous drive[J]. Applied Thermal Engineering, 2014, 67 (1/2): 409- 422
22 IQBAL S, AL-BENDER F, OMPUSUNGGU A P, et al. Modeling and analysis of wet friction clutch engagement dynamics[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 420-436.
23 HOLGERSON M Apparatus for measurement of engagement characteristics of a wet clutch[J]. Wear, 1997, 213 (1/2): 140- 147
24 LI T, HUANG Y, LIN J Studies on centrifugal clutch judder behavior and the design of frictional lining materials[J]. Mechanical Systems and Signal Processing, 2016, 66-67: 811- 828
doi: 10.1016/j.ymssp.2015.06.010
25 彭建鑫, 金辉, 陈慧岩 基于最优化理论的离合器接合曲线研究[J]. 北京理工大学学报, 2009, 29 (11): 964- 967
PENG Jian-xin, JIN Hui, CHEN Hui-yan Engagement curve of clutch based on optimization theory[J]. Transactions of Beijing Institute of Technology, 2009, 29 (11): 964- 967
26 王立勇, 李乐, 李和言 基于有限元法的湿式离合器摩擦界面温度场变化过程分析[J]. 润滑与密封, 2017, 42 (1): 15- 26
WANG Li-yong, LI Le, LI He-yan Study on temperature field variation process of friction interface of wet clutch based on finite element method[J]. Lubrication Engineering, 2017, 42 (1): 15- 26
doi: 10.3969/j.issn.0254-0150.2017.01.003
27 胡宏伟, 周晓军, 庞茂, 等 基于B样条小波的离合器温度场有限元分析[J]. 浙江大学学报: 工学版, 2009, 43 (01): 143- 147
HU Hong-wei, ZHOU Xiao-jun, PANG Mao, et al Finite element analysis for temperature field of clutches based on B-spline wavelet[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (01): 143- 147
28 MENG F, SHI P, KARIMI H R, et al Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints[J]. Mechanical Systems and Signal Processing, 2016, 68-69: 491- 503
doi: 10.1016/j.ymssp.2015.06.025
[1] 孔庆盼,纪献兵,周儒鸿,尤天伢,徐进良. 亲-疏水两层结构表面强化蒸汽冷凝传热[J]. 浙江大学学报(工学版), 2020, 54(5): 1022-1028.
[2] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[3] 金松涛,刘畅,王丽颖,杨扬. 严寒地区被动房外墙传热系数[J]. 浙江大学学报(工学版), 2019, 53(10): 1966-1976.
[4] 牟林巍, 张宇鸿, 李佳琦, 张嘉懿, 蒋平, 范利武. 表面芯吸性对淬火过程中沸腾传热特性的影响[J]. 浙江大学学报(工学版), 2018, 52(5): 960-965.
[5] 杨继虎, 孙志坚, 袁瑞峰, 黄浩, 陈天宇, 胡亚才. 电厂氟塑钢空预器的传热与积灰性能研究[J]. 浙江大学学报(工学版), 2018, 52(3): 577-583.
[6] 段毅, 程乐鸣, 吴雪松, 邱坤赞, 骆仲泱. 内嵌换热面双层多孔介质预混燃烧试验研究[J]. 浙江大学学报(工学版), 2017, 51(8): 1626-1632.
[7] 夏宇,仇性启,惠媛媛. 伴有参与性介质的开口系统传热研究[J]. 浙江大学学报(工学版), 2016, 50(7): 1367-1372.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[9] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[10] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[11] 王静, 蔡忆昔, 包伟伟, 李慧霞. 离子风强化大功率LED散热的实验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1952-1958.
[12] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[13] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[14] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[15] 何方祥, 詹树林, 钱晓倩, 赖俊英. 平屋顶遮阳通风层隔热的数值模拟分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2397-2402.