Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 1022-1028    DOI: 10.3785/j.issn.1008-973X.2020.05.021
能源与动力工程     
亲-疏水两层结构表面强化蒸汽冷凝传热
孔庆盼(),纪献兵*(),周儒鸿,尤天伢,徐进良
华北电力大学 低品位能源多相流与传热北京市重点实验室,北京 102206
Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface
Qing-pan KONG(),Xian-bing JI*(),Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU
Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy, North China Electric Power University, Beijing 102206, China
 全文: PDF(1458 KB)   HTML
摘要:

为了研究蒸汽在不同润湿性结构表面上的冷凝传热性能,基于协同排液思想和仿生理念,利用化学刻蚀法制备超疏水-超亲水两层结构表面:一层为超疏水表面,另一层为经双氧水氧化的烧结乳突结构表面,2层之间为空腔. 研究组合结构、过冷度和冷却水体积流量对冷凝传热的影响. 实验结果表明:亲-疏水组合结构表面的冷凝传热系数最高. 当过冷度为5.0 K时,组合结构表面的冷凝传热系数分别为光滑铜表面和单一超疏水表面的4.8、1.8倍. 冷凝形成的液滴在向乳突运动的过程中主要受到2个驱动力:接触乳突结构后受到的拉普拉斯压差作用力、乳突内部孔隙所产生的毛细吸力. 组合表面的冷凝传热系数随冷却水体积流量的增大和过冷度的增大而逐渐减小.

关键词: 冷凝传热润湿性组合结构多尺度协同排液    
Abstract:

A hydrophilic-hydrophobic two-layer surface was prepared based on the idea of synergistic drainage and bionics, using chemical etching, in order to study the condensation heat transfer performance of steam on different wettability structure surfaces. The two-layer surface is composed of one layer of superhydrophobic surface and the other layer of sintered mastoid structure, between which is a cavity. The effects of composited structure, subcooling and cooling water volume flow flux on condensation heat transfer were studied. Experimental results show that the hydrophilic-hydrophobic composited structure can improve the heat transfer coefficient. The condensation heat transfer coefficient of the composited structure is 4.8 and 1.8 times that of the smooth copper surface and the single superhydrophobic surface, respectively, when the subcooling is 5.0 K. There are two main driving forces in the movement process of condensed droplets towards the mastoid. One is the Laplace pressure difference force after contacting the mastoid structure, and the other is the capillary suction force produced by the pores in the mastoid. The condensation heat transfer coefficient of the combined surface gradually decreases with the increase of the cooling water volume flow and the increase of the degree of subcooling.

Key words: condensation heat transfer    wettability    composite structure    multi-scale    cooperative drainage
收稿日期: 2019-05-05 出版日期: 2020-05-05
CLC:  TK 124  
基金资助: 国家自然科学基金资助项目(51676071);国家自然科学基金重点资助项目(51436004)
通讯作者: 纪献兵     E-mail: kongqp@ncepu.edu.cn;jxb@ncepu.edu.cn
作者简介: 孔庆盼(1994—),男,硕士生,从事多尺度相变冷凝换热研究. orcid.org/0000-0002-2282-9501. E-mail: kongqp@ncepu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孔庆盼
纪献兵
周儒鸿
尤天伢
徐进良

引用本文:

孔庆盼,纪献兵,周儒鸿,尤天伢,徐进良. 亲-疏水两层结构表面强化蒸汽冷凝传热[J]. 浙江大学学报(工学版), 2020, 54(5): 1022-1028.

Qing-pan KONG,Xian-bing JI,Ru-hong ZHOU,Tian-ya YOU,Jin-liang XU. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1022-1028.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.021        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/1022

图 1  密闭腔内蒸汽冷凝实验系统图
图 2  超亲水乳突的尺寸和结合方式
图 3  超疏水表面和超亲水表面的扫描电镜图
图 4  超亲水乳突和亲水乳突的吸液表现
图 5  特征表面对传热系数的影响
图 6  特征表面对热流密度的影响
图 7  液滴在乳突表面和内部的运动示意图
图 8  冷却水体积流量对传热性能的影响
1 BARAKO M T, GAMBIN V, TICE J Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications[J]. Nanotechnology, 2018, 29 (15): 154003
doi: 10.1088/1361-6528/aaabe1
2 宿吉强, 范黎, 高力 安全壳冷却系统蒸汽冷凝传热研究综述[J]. 原子能科学技术, 2016, 50 (11): 1956- 1966
SU Ji-qiang, FAN Li, GAO Li Review of steam condensation heat transfer under containment cooling system condition[J]. Atomic Energy Science and Technology, 2016, 50 (11): 1956- 1966
3 SNUSTAD I, R?E I T, BRUNSVOLD A, et al A review on wetting and water condensation-Perspectives for CO2 condensation [J]. Advances in Colloid and Interface Science, 2018, 256: 291- 304
doi: 10.1016/j.cis.2018.03.008
4 齐隽楠, 吴嘉峰, 陈亚平 疏水表面蒸汽滴状冷凝传热实验分析[J]. 制冷技术, 2015, 35 (3): 11- 14
QI Jun-nan, WU Jia-feng, CHEN Ya-ping Experimental analysis on dropwise condensation of steam onhydrophobic surfaces[J]. Chinese Journal of Refrigeration Technology, 2015, 35 (3): 11- 14
doi: 10.3969/j.issn.2095-4468.2015.03.103
5 LU M C, LIN C C, LO C W, et al Superhydrophobic Si nanowires for enhanced condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 111: 614- 623
doi: 10.1016/j.ijheatmasstransfer.2017.04.021
6 LAN Z, MA X H, WANG S F, et al Effects of surface free energy and nanostructures on dropwise condensation[J]. Chemical Engineering Journal, 2010, 156 (3): 546- 552
doi: 10.1016/j.cej.2009.04.007
7 WIER K A, MCCARTHY T J Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant[J]. Langmuir, 2006, 22 (6): 2433- 2436
doi: 10.1021/la0525877
8 JI X B, ZHOU D D, DAI C, et al Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface[J]. International Journal of Heat and Mass Transfer, 2019, 132: 52- 67
doi: 10.1016/j.ijheatmasstransfer.2018.11.139
9 ALWAZZAN M, EGAB K, PENG B L, et al Condensation on hybrid-patterned copper tubes (I): characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991- 1004
doi: 10.1016/j.ijheatmasstransfer.2017.05.039
10 HU H W, TANG G H, NIU D Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas[J]. International Journal of Heat and Mass Transfer, 2015, 85: 513- 523
doi: 10.1016/j.ijheatmasstransfer.2015.02.006
11 彭本利, 马学虎, 兰忠, 等 组合表面调控液滴特性强化蒸汽冷凝传热[J]. 化工学报, 2015, 66 (10): 3826- 3833
PENG Ben-li, MA Xue-hu, LAN Zhong, et al Steam condensation heat transfer enhancement through droplet properties manipulation with hybrid surfaces[J]. CIESC Journal, 2015, 66 (10): 3826- 3833
12 KOCH K, BARTHLOTT W Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367 (1893): 1487- 1509
doi: 10.1098/rsta.2009.0022
13 OTHMER D F The condensation of steam[J]. Industrial and Engineering Chemistry, 1929, 21 (6): 576- 583
doi: 10.1021/ie50234a018
14 HUANG D J, LEU T S Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink[J]. Applied Thermal Engineering, 2015, 75: 908- 917
doi: 10.1016/j.applthermaleng.2014.10.019
15 WENZEL R N Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28 (8): 988- 994
doi: 10.1021/ie50320a024
16 李翔, 齐宝金, 魏进家 差异化疏水铜表面的冷凝传热实验研究[J]. 工程热物理学报, 2018, 39 (2): 428- 433
LI Xiang, QI Bao-jin, WEI Jin-jia Experimental study of condensation heat transfer on the differentiated hydrophobic copper surfaces[J]. Journal of Engineering Thermophysics, 2018, 39 (2): 428- 433
17 SONG C, ZHENG Y Wetting-controlled strategies: from theories to bio-inspiration[J]. Journal of Colloid and Interface Science, 2014, 427: 2- 14
doi: 10.1016/j.jcis.2013.10.067
18 XUE Y, WANG T, SHI W, et al Water collection abilities of green bristlegrass bristle[J]. RSC Advances, 2014, 4 (77): 40837- 40840
doi: 10.1039/C4RA06661H
19 HAIDARA H, LEBEAU B, GRZELAKOWSKI C, et al Competitive spreading versus imbibition of polymer liquid drops in nanoporous membranes: scaling behavior with viscosity[J]. Langmuir, 2008, 24 (8): 4209- 4214
doi: 10.1021/la703538g
[1] 余文韬,谢旭,成程. 焊接构造对T型接头超低周疲劳性能的影响[J]. 浙江大学学报(工学版), 2021, 55(1): 31-37.
[2] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.
[3] 明涛,王丹,郭继昌,李锵. 基于多尺度通道重校准的乳腺癌病理图像分类[J]. 浙江大学学报(工学版), 2020, 54(7): 1289-1297.
[4] 汪劲丰,张爱平,王文浩. 栓钉高度对栓钉连接件抗剪性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2076-2084.
[5] 陈昀,蔡晓东,梁晓曦,王萌. 特征图聚集多尺度行人检测高效算法[J]. 浙江大学学报(工学版), 2019, 53(6): 1218-1224.
[6] 张淑芳,朱彤. 基于残差单发多框检测器模型的交通标志检测与识别[J]. 浙江大学学报(工学版), 2019, 53(5): 940-949.
[7] 林志洁,罗壮,赵磊,鲁东明. 特征金字塔多尺度全卷积目标检测算法[J]. 浙江大学学报(工学版), 2019, 53(3): 533-540.
[8] 胡天中,余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版), 2019, 53(10): 1852-1864.
[9] 刘大龙, 冯冬芹. 采用多尺度主成分分析的控制系统欺骗攻击检测[J]. 浙江大学学报(工学版), 2018, 52(9): 1738-1746.
[10] 童水光, 张依东, 徐剑, 从飞云. 频带多尺度复合模糊熵及其在轴承故障诊断中的应用[J]. 浙江大学学报(工学版), 2018, 52(8): 1509-1516.
[11] 方钊, 李爱群, 李万润, 沈圣. 钢结构风致疲劳分析的多尺度有限元验证分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1131-1139.
[12] 郐艳荣, 齐梅兰, 李金钊. 近海岸桥梁下部结构波浪力分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2356-2364.
[13] 汪炳, 黄侨, 邹韵, 李文贤. 开孔板连接件剩余承载力计算模型及试验验证[J]. 浙江大学学报(工学版), 2017, 51(8): 1537-1543.
[14] 杨冰,王小华,杨鑫,黄孝喜. 基于HOG金字塔人脸识别方法[J]. 浙江大学学报(工学版), 2014, 48(9): 1564-1569.
[15] 牛辉,汪劲丰,张仪萍,张治成,俞亚南. 空间曲线蝶形拱桥顶推施工的多尺度模拟分析[J]. J4, 2013, 47(7): 1205-1212.