Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2067-2075    DOI: 10.3785/j.issn.1008-973X.2019.11.003
机械工程     
拉刀切削刃表面微结构对拉削性能的影响
倪敬*(),郭鑫润,毋少峰,任旭
杭州电子科技大学 机械工程学院,浙江 杭州 310018
Influence of broaching cutting edge surface microstructure on broaching performance
Jing NI*(),Xing-run GUO,Shao-feng WU,Xu REN
College of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF(1472 KB)   HTML
摘要:

为了研究拉刀切削刃表面微结构对拉削加工的影响,搭建拉削加工实验台,设计5种表面微结构数量不同的拉刀,进行实际拉削负载、工件振动特性和切屑蜷曲半径的对比实验. 实验结果表明,当刀具型号从2/3型变为6/7型时,拉削负载呈现先减小后增大的趋势;使用4/5型拉刀时的拉削负载最低,与使用2/3型拉刀和6/7型拉刀时相比,负载分别降低420、647 N. 拉刀切削刃表面微结构槽数量越多,对工件振动特性的抑制效果越好;使用6/7型拉刀时的工件微振动均方根振幅和刀齿切入频率对应的幅值相对于使用2/3型拉刀时分别降低38%、63%. 随着拉刀切削刃微结构槽数量的增多,切屑的蜷曲半径(即切屑变形难易程度)呈现先减小后增大的趋势,当使用4/5型拉刀时切屑的蜷曲半径达到最小值(654 μm). 增加切削刃表面微结构的数量可以提高拉削性能,但是数量并不是越多越好,而是存在最优值.

关键词: 表面微结构切削刃切削负载振动实验研究    
Abstract:

In order to study the influence of the broaching cutting edge surface microstructure on the broaching process, a broaching test bench was set up. Five kinds of broaches with different numbers of surface micro-structure grooves were designed. A comparison test of the actual broaching load, the workpiece vibration characteristics and the chip tortuous radius was carried out. Test results showed that when the tool model changed from 2/3 to 6/7, the broaching load first decreased and then increased, and when the 4/5 type broach was used, the cutting load was the lowest, which was 420 N lower than that of the 2/3 type broach, and 647 N lower than that of the 6/7 type broach. The more the number of micro-grooves on the surface of the broaching cutting edge, the better the suppression effect on the vibration characteristics of the workpiece. Compared with the 2/3 type broach, the root mean square amplitude of the micro-vibaration of the workpiece and the amplitude corresponding to the cutting frequency of the 6/7 type broach were reduced by 38% and 63%, respectively. With the increase of the number of micro-structure grooves of the broaching cutting edge, the tortuous radius of the chip, i.e. the difficulty of chip deformation, decreased first and then increased, and the distortion radius of the chip was the minimum (654 μm) when the 4/5 type broach was used. Increasing the number of microstructures on the cutting edge surface can improve the broaching performance, but not the more the better, there is an optimum value.

Key words: surface micro-structure    cutting edge    broaching load    vibration    experimental research
收稿日期: 2018-09-28 出版日期: 2019-11-21
CLC:  TG 501  
基金资助: 国家自然科学基金资助项目(51775153)
通讯作者: 倪敬     E-mail: nijing2000@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
倪敬
郭鑫润
毋少峰
任旭

引用本文:

倪敬,郭鑫润,毋少峰,任旭. 拉刀切削刃表面微结构对拉削性能的影响[J]. 浙江大学学报(工学版), 2019, 53(11): 2067-2075.

Jing NI,Xing-run GUO,Shao-feng WU,Xu REN. Influence of broaching cutting edge surface microstructure on broaching performance. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2067-2075.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.003        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2067

图 1  拉削实验系统
图 2  拉削刀具示意图
图 3  不同型号拉刀的表面微结构
图 4  拉削加工前、后的工件模型
刀具型号 v/(mm?s?1 fs/kHz to/s nt N
2/3 80 2 8 2或3 10
3/4 80 2 8 3或4 10
4/5 80 2 8 4或5 10
5/6 80 2 8 5或6 10
6/7 80 2 8 6或7 10
表 1  实验参数设计表
图 5  不同型号拉刀的拉削负载曲线
图 6  不同拉刀平均负载对比图
图 7  多齿切削情况下工件与刀齿的接触原理图
拉刀型号 m bt/mm Δ/%
2/3 2,3 15.0,14.5 10,14
3/4 3,4 14.5,14.0 14,17
4/5 4,5 14.0,13.5 17,18
5/6 5,6 13.5,13.0 18,23
6/7 6,7 13.0,12.5 23,28
表 2  切屑凸起宽度与刀齿接触宽度比
图 8  不同型号拉刀拉削过程中工件振动特性变化趋势
图 9  不同型号拉刀拉削过程中工件z方向的振动特性频谱图
图 10  不同型号拉刀产生的切屑形态
图 11  不同型号拉刀产生的切屑蜷曲半径变化趋势
1 LEI S T, DEVARAJAN S, CHANG Z H A study of micro pool lubricated cutting tool in machining of mild steel[J]. Journal of Materials Processing Technology, 2009, 209 (3): 1612- 1620
doi: 10.1016/j.jmatprotec.2008.04.024
2 NI J, LANG J, WU C Effect of surface texture on the transverse vibration for sawing[J]. International Journal of Advanced Manufacturing Technology, 2017, 92 (9–12): 4543- 4551
doi: 10.1007/s00170-017-0486-8
3 MOHAMED A M O, BAUER R, WARKENTIN A Application of shallow circumferential grooved wheels to creep-feed grinding[J]. Journal of Materials Processing Technology, 2013, 213 (5): 700- 706
doi: 10.1016/j.jmatprotec.2012.11.029
4 SHENG J, ZHOU J, HUANG S, et al Characterization and tribological properties of micro-dent arrays produced by laser peening on ZCuSn10P1 alloy[J]. International Journal of Advanced Manufacturing Technology, 2015, 76 (5–8): 1285- 1295
doi: 10.1007/s00170-014-6344-z
5 YANG Y F, SU Y S, LI L, et al Performance of cemented carbide tools with microgrooves in Ti-6Al-4V titanium alloy cutting[J]. International Journal of Advanced Manufacturing Technology, 2015, 76 (9–12): 1731- 1738
doi: 10.1007/s00170-014-6357-7
6 戚宝运, 李亮, 何宁, 等 微织构刀具正交切削Ti6Al4V的试验研究[J]. 摩擦学学报, 2011, 31 (4): 346- 351
QI Bao-yun, LI Liang, HE Ning, et al Experimental study on orthogonal cutting of Ti6Al4V alloy by micro-textured tool[J]. Journal of Tribology, 2011, 31 (4): 346- 351
7 FATIMA A, MATIVENGA P T A comparative study on cutting performance of rake-flank face structured cutting tool in orthogonal cutting of AISI/SAE 4140[J]. International Journal of Advanced Manufacturing Technology, 2015, 78 (9–12): 2097- 2106
doi: 10.1007/s00170-015-6799-6
8 DONG M K, BAJPAI V, BO H K, et al Finite element modeling of hard turning process via a micro-textured tool[J]. International Journal of Advanced Manufacturing Technology, 2015, 78 (9–12): 1393- 1405
doi: 10.1007/s00170-014-6747-x
9 DUAN R, DENG J X, GE D L, et al An approach to predict derivative-chip formation in derivative cutting of micro-textured tools[J]. International Journal of Advanced Manufacturing Technology, 2018, 95 (1–4): 973- 982
doi: 10.1007/s00170-017-1285-y
10 OBIKAWA T, KAMIO A, TAKAOKA H, et al Micro-texture at the coated tool face for high performance cutting[J]. International Journal of Machine Tools and Manufacture, 2011, 51 (12): 966- 972
doi: 10.1016/j.ijmachtools.2011.08.013
11 DENG J, WU Z, LIAN Y, et al Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes[J]. International Journal of Refractory Metals and Hard Materials, 2012, 30 (1): 164- 172
doi: 10.1016/j.ijrmhm.2011.08.002
12 SONG W L, DENG J X, WANG Z J Machining performance of micro-pool tools[J]. Journal of Tribology, 2009, 29 (2): 103- 108
13 XING Y, DENG J, ZHAO J, et al Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel [J]. International Journal of Refractory Metals and Hard Materials, 2014, 43 (3): 46- 58
14 宋文龙, 邓建新, 王志军 微池润滑刀具干切削过程中的减摩机理[J]. 摩擦学学报, 2013, 29 (8): 121- 124
SONG Wen-long, DENG Jian-xin, WANG Zhi-jun Friction reduction mechanism during dry cutting of micro-pool lubrication tools[J]. Lubrication and Sealing, 2013, 29 (8): 121- 124
15 KAWASEGI N, SUGIMORI H, MORIMOTO H, et al Development of cutting tools with microscale and nanoscale textures to improve frictional behavior[J]. Precision Engineering, 2009, 33 (3): 248- 254
doi: 10.1016/j.precisioneng.2008.07.005
16 邓建新, 丁泽良, 赵军, 等 高温自润滑陶瓷刀具材料及其切削性能的研究[J]. 机械工程学报, 2003, 39 (8): 106- 109
DENG Jian-xin, DING Ze-liang, ZHAO Jun, et al Study on high temperature self-lubricating ceramic tool material and its cutting performance[J]. Journal of Mechanical Engineering, 2003, 39 (8): 106- 109
doi: 10.3321/j.issn:0577-6686.2003.08.020
17 WU Z, DENG J, YANG C, et al Performance of the self-lubricating textured tools in dry cutting of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2012, 62 (9–12): 943- 951
doi: 10.1007/s00170-011-3853-x
18 DUAN R, DENG J, AI X, et al Experimental assessment of derivative cutting of micro-textured tools in dry cutting of medium carbon steels[J]. International Journal of Advanced Manufacturing Technology, 2017, 92 (9–12): 3531- 3540
doi: 10.1007/s00170-017-0360-8
19 LI Y, DENG J, CHAI Y, et al Surface textures on cemented carbide cutting tools by micro EDM assisted with high-frequency vibration[J]. International Journal of Advanced Manufacturing Technology, 2016, 82 (9–12): 2157- 2165
doi: 10.1007/s00170-015-7544-x
20 XING Y, DENG J, WANG X, et al Experimental assessment of laser textured cutting tools in dry cutting of aluminum alloys[J]. Journal of Manufacture Science and Engineering, 2016, 138: 071006
21 XIE J, LUO M J, WU K K, et al Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool[J]. International Journal of Machine Tools and Manufacture, 2013, 73 (1): 25- 36
22 XIE J, LI Y H, YANG L F Study on 5-axial milling on micro structured freeform surface using the macro-ball cutter patterned with micro-cutting-edge array[J]. CIRP Annals Manufacturing Technology, 2015, 64 (1): 101- 104
doi: 10.1016/j.cirp.2015.04.075
[1] 姚喆赫,张操棋,宋其伟,卢习江,孔建强,姚建华. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版), 2021, 55(5): 887-895.
[2] 胡广豪,薛进学,马文举,隆志力. 芯片键合纵弯复合超声换能器的设计与试验[J]. 浙江大学学报(工学版), 2020, 54(7): 1335-1340.
[3] 赖杰,刘云,辛建平,王炜,高成强,朱海波. 大理西站支护边坡振动台试验及数值模拟[J]. 浙江大学学报(工学版), 2020, 54(5): 870-878.
[4] 赵佳雷,周叮,张建东,胡朝斌. 基于Chebyshev-Ritz法分析多裂纹梁自振特性[J]. 浙江大学学报(工学版), 2020, 54(4): 778-786.
[5] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[6] 谭芳芳,朱俊江,严天宏,高志强,何岭松. 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报(工学版), 2020, 54(1): 40-47.
[7] 刘佩,朱海鑫,杨维国,皇甫楠琦. 机械振动引起的高层建筑共振与减振响应实测[J]. 浙江大学学报(工学版), 2020, 54(1): 102-109.
[8] 陈瑶,蔡袁强,曹志刚,王海江. 不平顺路面对交通荷载引起的地基振动影响[J]. 浙江大学学报(工学版), 2019, 53(6): 1031-1039.
[9] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[10] 胡霖远,陈伟球,张治成,徐荣桥. 基于Zig-zag理论的波形钢腹板梁自由振动分析[J]. 浙江大学学报(工学版), 2019, 53(3): 503-511.
[11] 徐珂,应红亮,黄苏融,张琪. 转子分段斜极对永磁同步电机电磁噪声的削弱影响[J]. 浙江大学学报(工学版), 2019, 53(11): 2248-2254.
[12] 李劲林, 王佳斌, 何闻. 非接触式定位隔振平台机电联合仿真分析[J]. 浙江大学学报(工学版), 2019, 53(1): 146-157.
[13] 赵皓宇, 祝长生. 电磁轴承刚性转子系统前馈解耦控制[J]. 浙江大学学报(工学版), 2018, 52(9): 1777-1787.
[14] 李小超, 徐伟, 周熙林, 赵利平. 涡激振动发电装置水动力及功率特性实验研究[J]. 浙江大学学报(工学版), 2018, 52(7): 1370-1375.
[15] 陈学军, 杨永明. 采用经验小波变换的风力发电机振动信号消噪[J]. 浙江大学学报(工学版), 2018, 52(5): 988-995.