Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (9): 1777-1787    DOI: 10.3785/j.issn.1008-973X.2018.09.019
电气工程     
电磁轴承刚性转子系统前馈解耦控制
赵皓宇, 祝长生
浙江大学 电气工程学院, 浙江 杭州 310027
Feedforward decoupling control for magnetically suspended rigid rotor system
ZHAO Hao-yu, ZHU Chang-sheng
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3294 KB)   HTML
摘要:

为了消除电磁轴承支撑的刚性转子系统径向各自由度间的耦合,提出电磁轴承刚性转子系统径向四自由度的前馈解耦控制策略;针对解耦后系统存在的不平衡振动,提出基于不平衡量辨识的转子不平衡补偿方法;为了提升解耦和不平衡补偿效果,利用最速跟踪微分器来获取前馈解耦控制器及不平衡量辨识器所需的微分信号.仿真及试验结果表明,所设计的前馈解耦控制器可以将电磁轴承刚性转子系统径向原来相互耦合的四自由度系统解耦为4个单自由度系统;利用所设计的不平衡量辨识器辨识出转子不平衡量并对其进行补偿,能够抑制转子系统的不平衡振动;采用最速跟踪微分器,不仅能够削弱测量噪声对解耦效果及不平衡补偿效果的影响,还能够提升控制系统的抗噪能力.

Abstract:

A feedforward decoupling control for magnetically suspended rigid rotor was proposed in order to eliminate the coupling between the radial four degree-of-freedom of a rigid rotor supported by two radial active magnetic bearings (AMB). The rotor imbalance compensation method based on imbalance identification was used to suppress the imbalance vibration of the rigid rotor system which had been decoupled by the feedforward decoupling control method. In order to improve the performance of feedforward decoupling control and imbalance compensation, a time-optimal tracking differentiator was used to get the differential signals in the feedforward decoupling control and imbalance compensation. Numerical simulations and experiment results show that the radial four degree-of-freedom coupling system for the AMB-rigid rotor can be completely decoupled into four single degree-of-freedom systems by the feedforward decoupling controller; the imbalance vibration of the rigid rotor system can be suppressed by the imbalance compensation method based on rotor imbalance identification; the performance of decoupling and imbalance compensation can be improved; the anti-interference ability of the control system can be enhanced by using the time-optimal tracking-differentiator.

收稿日期: 2017-07-27 出版日期: 2018-09-20
CLC:  TM306  
基金资助:

国家自然科学基金资助项目(11632015,51477155);浙江省自然科学基金资助项目(LZ13E070001);先进航空发动机协同创新中心资助项目

通讯作者: 祝长生,男,教授,博导.     E-mail: 祝长生,男,教授,博导.E-mail:zhu_zhang@zju.edu.cn
作者简介: 赵皓宇(1988-),男,硕士生,从事高速电机电磁轴承控制研究.orcid.org/0000-0002-2109-6043.E-mail:zhaohaoyu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

赵皓宇, 祝长生. 电磁轴承刚性转子系统前馈解耦控制[J]. 浙江大学学报(工学版), 2018, 52(9): 1777-1787.

ZHAO Hao-yu, ZHU Chang-sheng. Feedforward decoupling control for magnetically suspended rigid rotor system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1777-1787.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.09.019        http://www.zjujournals.com/eng/CN/Y2018/V52/I9/1777

[1] BLEULER H, COLE M, KEOGH P. Magnetic bearings:theory, design and application to rotating machinery[M]. New York:Springer, 2009:150-154.
[2] 章琦, 祝长生. 电磁悬浮飞轮转子系统的模态解耦控制[J]. 振动工程学报, 2012, 25(3):302-310 ZHANG Qi, ZHU Chang-sheng. Modal decoupling control for active magnetic bearing-supported flywheel rotor system[J]. Journal of Vibration Engineering, 2012, 25(3):302-310
[3] AHRENS M, KUCERA L. Cross feedback control of a magnetic bearing system controller design considering gyroscopic effects[C]//Proceedings of the 3rd International Symposium on Magnetic Suspension Technology. Pennsylvania:Technomic Publishing Company Inc, 1995:177-194.
[4] 沈钺, 孙岩桦, 王世琥, 等. 磁悬浮飞轮系统陀螺效应的抑制[J]. 西安交通大学学报, 2003, 37(11):1105-1109 CHEN Yue, SUN Yan-hua, WANG Shi-hi, et al. Reduction of gyroscopic effect of a magnetic bearing-supported flywheel system[J]. Journal of Xi'an Jiaotong University, 2003, 37(11):1105-1109
[5] 田希晖, 房建成, 刘刚. 一种磁悬浮飞轮增益预调交叉反馈控制方法[J]. 北京航空航天大学学报, 2006, 32(11):1299-1303 TIAN Xi-hui, FANG Jian-cheng, LIU Gang. Gain scheduling cross feedback control approach for magnetic suspending flywheel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(11):1299-1303
[6] 刘金琨. 智能控制[M]. 北京:电子工业出版社, 2017:3-5.
[7] OUYANG H, LIU F, ZHANG G, et al. Vibration suppression for rotor system of magnetic suspended wind turbines using cross-feedback-based sliding mode control[C]//IEEE/SICE International Symposium on System Integration. Tokyo:IEEE, 2015:112-115.
[8] LI H, YANG S, REN H. Dynamic decoupling control of DGCMG gimbal system via state feedback linearization[J]. Mechatronics, 2016, 36:127-135.
[9] GUO X, WANG Q, LI G, et al. Adaptive fuzzy decoupling control for permanent magnet spherical motor dynamic system[C]//International Conference on Electrical Machines and Systems. Hangzhou:IEEE, 2014:2192-2196.
[10] 李春文, 冯元琨. 多变量非线性控制的逆系统方法[M]. 北京:清华大学出版社, 1991:6-7.
[11] FANG J, REN Y. Decoupling control of magnetically suspended rotor system in control moment gyros based on an inverse system method[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1133-1144.
[12] HUTTERER M, HOFER M, SCHRODL M. Decoupled control of an active magnetic bearing system for a high gyroscopic rotor[C]//IEEE International Conference on Mechatronics. Nagoya:IEEE, 2015:210-215.
[13] LI Y, ZHU H. Decoupling control of three degrees of freedom hybrid magnetic bearing based on LS-SVM[J]. Applied Mechanics & Materials, 2014, 29:534-538.
[14] 富月, 李婧怡. 线性多变量系统有限时间最优解耦控制[J]. 控制与决策, 2016, 12(31):2271-2273 FU Yue, LI Jing-yi. Finite-time optimal decoupling control for linear multi-variable systems[J]. Control and Decision, 2016, 12(31):2271-2273
[15] ZHENG S, HAN B, FENG R, et al. Vibration suppression control for AMB-supported motor driveline system using synchronous rotating frame transformation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9):5700-5708.
[16] JIANG K, ZHU C, CHEN L. Imbalance compensation by recursive seeking imbalance mass position in active magnetic bearing-rotor system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9):5655-5664.
[17] FANG J, XU X, XIE J. Active vibration control of rotor imbalance in active magnetic bearing systems[J]. Journal of Vibration and Control, 2013, 21(4):684-700.
[18] 韩京清. 自抗扰控制技术[M]. 北京:国防工业出版社, 2008:69-71
[19] 戴先中. 多变量非线性系统的神经网络逆控制方法[M]. 北京:科学出版社, 2005:94.

No related articles found!