Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (1): 102-109    DOI: 10.3785/j.issn.1008-973X.2020.01.012
土木工程、交通工程     
机械振动引起的高层建筑共振与减振响应实测
刘佩1,2(),朱海鑫1,杨维国1,皇甫楠琦1
1. 北京交通大学 土木建筑工程学院,北京 100044
2. 北京交通大学 结构风工程与城市风环境北京市重点实验室,北京 100044
Tests on resonance and vibration mitigation responses of high-rise building under machine excitations
Pei LIU1,2(),Hai-xin ZHU1,Wei-guo YANG1,Nan-qi HUANGFU1
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2. Beijing’s Key Laboratory of Structural Wind Engineering and Urban Wind Environment, Beijing Jiaotong University, Beijing 100044, China
 全文: PDF(2353 KB)   HTML
摘要:

对某经常出现明显水平振动的13层住宅楼进行测试. 由楼层加速度时程计算得到1/3倍频程谱和振动计权加速度级,评价各楼层的人体舒适度,利用频域分解法识别得到结构的动力特性. 通过振源排查,鉴定该楼周边采石场锯石机的工作频率1.5 Hz与结构基本自振频率相同而发生共振. 测试机器工作台数对结构响应的影响,发现距结构约200 m的采石场4台机器同时工作会导致结构振动超限. 距该采石场约500 m的另一住宅楼的实测共振响应减小. 对锯石机安装变频器作为减振措施,测试机器以1.33和1.2 Hz工作时结构的响应,减振效果明显. 结果表明,振源强度、振源与结构间距、振源与结构频率接近程度是影响外部单一频率激励引起的结构共振响应是否超限的关键因素.

关键词: 振动测试共振动力特性振源减振措施    
Abstract:

Tests were conducted in a 13-storied residential building where obvious horizontal vibration often occurred. One-third octave spectra and weighted acceleration levels were computed from the measured floor acceleration time histories in order to assess the human comfort levels. Modal parameters of the building were identified by using the frequency domain decomposition method. The inspection of the vibration sources around the building showed that the working frequency of the stone sawing machines in the nearby factories was 1.5 Hz which was the same as the fundamental natural frequency of the building causing resonance responses. Influences of number of working machines on the vibration responses of the building were measured. Results showed that the floor acceleration exceeded the limit when four machines were working in the factory about 200 m away from the building. The measured resonance responses of another building about 500 m away from the factory decreased. Frequency converters were installed on the machines to reduce vibration of the building. Floor accelerations of the building were measured under working frequencies 1.33 Hz and 1.2 Hz of the machines, which were significantly reduced. Results show that excitation intensity, distance between excitation and structure, difference between frequencies of excitation and structure are the key factors influencing structural resonance responses under external excitation of single frequency component.

Key words: vibration test    resonance    dynamic characteristics    vibration source    vibration mitigation measure
收稿日期: 2019-01-14 出版日期: 2020-01-05
CLC:  TU 311  
基金资助: 中央高校基本科研业务费专项资金资助项目(2019JBM085);北京交通大学大学生科研训练资助项目
作者简介: 刘佩(1982—),女,副教授,从事结构健康监测研究. orcid.org/0000-0002-9973-7699. E-mail: peiliu@bjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘佩
朱海鑫
杨维国
皇甫楠琦

引用本文:

刘佩,朱海鑫,杨维国,皇甫楠琦. 机械振动引起的高层建筑共振与减振响应实测[J]. 浙江大学学报(工学版), 2020, 54(1): 102-109.

Pei LIU,Hai-xin ZHU,Wei-guo YANG,Nan-qi HUANGFU. Tests on resonance and vibration mitigation responses of high-rise building under machine excitations. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 102-109.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.01.012        http://www.zjujournals.com/eng/CN/Y2020/V54/I1/102

图 1  2号楼标准层平面布置图
图 2  13层测点加速度时程
图 3  第1组测点1/3倍频程谱
楼层 VLs/dB VLl/dB VLL/dB
13层 82 58 77
12层 81 61 77
11层 80 61 77
9层 72 54 77
7层 69 54 77
表 1  所测各层振动计权加速度级
图 4  三单元第2组测点的功率谱密度曲线
测点 1阶 2阶 3阶
f/Hz ζ/% f/Hz ζ/% f/Hz ζ/%
三单元第1组 1.50 0.07 1.73 1.62 1.90 3.59
三单元第2组 1.50 0.97 1.70 3.51 1.90 2.63
三单元第3组 1.52 0.05 1.72 1.79 1.92 0.98
二单元第1组 1.50 0.08 1.73 1.01 1.91 2.59
二单元第2组 1.51 0.37 1.72 0.97 1.91 2.09
一单元第1组 1.50 0.47 1.82 2.30 1.97 2.52
一单元第2组 1.50 0.09 1.82 1.34 1.98 0.67
表 2  识别所得自振频率、阻尼比和振型
图 5  地面各测点位置及对应的功率谱密度曲线
图 6  振源-锯石机
持时 nA nB RMSa/(10?3 m·s?2 VL/dB
0~1 020 s 4 3 11.1 75
1 020~1 800 s 3 3 9.3 73
1 800~3 000 s 0 3 1.5 57
3 000~4 500 s 0 0 1.3 56
4 500~5 400 s 2 0 1.9 59
5 400~6 000 s 4 0 8.0 72
6 000~7 200 s 3 3 8.5 73
7 200~8 100 s 1 3 2.1 60
表 3  测试方案及各时段加速度均方根值和振动计权加速度级
图 7  不同机器工作台数下13层短轴向加速度时程
图 8  不同机器工作台数下采石场A和B场地沿结构短轴向加速度时程
图 9  无机械运行时各测点功率谱密度曲线
阶数 f/Hz ζ/% 振型
1阶 1.52 1.24 短轴向1阶弯曲
2阶 1.70 0.89 长轴向1阶弯曲
3阶 1.90 0.75 1阶整体扭转短轴向分量
4阶 4.67 0.95 1阶相向扭转
5阶 5.68 2.49 长轴向2阶弯曲
6阶 6.89 3.98 短轴向2阶弯曲
表 4  2号楼识别所得模态参数
图 10  模型参数识别所得振型
图 11  减振措施-变频器
图 12  3种锯石机工作频率下的13层加速度时程
fm/Hz PGA/(m·s?2 VL/dB RMSamax/(m·s?2
1.50 0.019 9 78 8.0×10-3
1.33 0.003 9 56 5.8×10-4
1.20 0.001 5 49 2.2×10-4
表 5  3种锯石机工作频率下的结构响应对比
图 13  3种锯石机工作频率下的13层测点功率谱密度曲线
图 14  5号楼各测点功率谱密度曲线
模态阶数 f/Hz ζ/% 振型
1阶 1.46 1.60 短轴向1阶弯曲
2阶 1.88 0.21 长轴向1阶弯曲耦合一定的扭转
3阶 2.37 0.50 1阶扭转
表 6  5号楼识别所得各阶模态参数
1 LEE S H, LEE K K, WOO S S, et al Global vertical mode vibrations due to human group rhythmic movement in a 39 story building structure[J]. Engineering Structures, 2013, 57 (12): 296- 305
2 LEE K K, LEE S H, KIMB G C, et al Global vertical resonance phenomenon between steel building and human rhythmic excitations[J]. Journal of Constructional Steel Research, 2014, 92 (1): 164- 174
3 NGUYEN T H, SAIDI I, GAD E F, et al Performance of distributed multiple viscoelastic tuned mass dampers for floor vibration applications[J]. Advances in Structural Engineering, 2012, 15 (3): 547- 562
doi: 10.1260/1369-4332.15.3.547
4 伏焕昌 内部干扰引起某宿舍楼共振分析[J]. 工程抗震与加固改造, 2009, 31 (2): 76- 78
FU Huan-chang Analysis of resonance of a building caused by internal disturbance[J]. Earthquake Resistant Engineering and Retrofitting, 2009, 31 (2): 76- 78
doi: 10.3969/j.issn.1002-8412.2009.02.014
5 沈超, 李大华, 刘亿, 等 临涣选煤厂煤炭筛分厂房振动检测与分析[J]. 选煤技术, 2015, 10 (5): 24- 27
SHEN Chao, LI Da-hua, LIU Yi, et al Vibration detection and analysis of coal screening plant in Linhua coal preparation plant[J]. Coal Preparation Technology, 2015, 10 (5): 24- 27
6 葛家琪, 王毅, 张玲, 等 地铁所致成都博物馆振动全过程性能化研究[J]. 建筑结构学报, 2015, 36 (2): 27- 34
GE Jia-qi, WANG Yi, ZHANG Ling, et al Performance-based study on whole process of metro induced vibration of the Chengdu Museum[J]. Journal of Building Structures, 2015, 36 (2): 27- 34
7 赵亚军. 厂房不良振动检测分析与处理方法[D]. 西安: 西安建筑科技大学, 2005.
ZHAO Ya-jun. Test and disposal to the harmful vibration of the factory buildings [D]. Xi’an: Xi’an University of Architecture and Technology, 2005.
8 宋欢. 地铁所致成都博物馆振动过程阻振研究[D]. 北京: 北京交通大学, 2015.
SONG Huan. Study on vibration-isolation on the propagation process of Chengdu Museum induced by metro [D]. Beijing: Beijing Jiaotong University, 2015.
9 CHEN X, DING Y L, LI A Q, et al Investigations on serviceability control of long-span structures under human-induced excitation[J]. Earthquake Engineering and Engineering Vibration, 2012, 11 (1): 57- 71
doi: 10.1007/s11803-012-0098-0
10 ZHANG Z Q, GUO T, YANG K, et al Simulation and measurement of human-induced vibrations of the Beijing Olympic watchtower with tuned mass dampers[J]. Journal of Performance of Constructed Facilities ASCE, 2017, 31 (6): 04017095
doi: 10.1061/(ASCE)CF.1943-5509.0001089
11 NI Y C, LU X L, LU W S Field dynamic test and Bayesian modal identification of a special structure: the Palms together Dagoba[J]. Structural Control and Health Monitoring, 2016, 23 (5): 838- 856
doi: 10.1002/stc.1816
12 NI Y C, LU X L, LU W S Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach[J]. Mechanical Systems and Signal Processing, 2017, 86 (3): 286- 307
13 ZHANG F L, XIONG H B, SHI W X, et al Structural health monitoring of Shanghai tower during different stages using a Bayesian approach[J]. Structural Control and Health Monitoring, 2016, 23 (11): 1366- 1384
doi: 10.1002/stc.1840
14 LIU P, ZHANG F L, LIAN P Y Dynamic characteristics analysis of two adjacent multi-grid composite wall structures with a seismic joint by a Bayesian approach[J]. Journal of Earthquake Engineering, 2016, 20 (8): 1295- 1321
doi: 10.1080/13632469.2016.1138168
15 刘佩, 连鹏宇 基于环境振动测试的框架结构主裙楼动力特性分析[J]. 振动与冲击, 2016, 35 (10): 174- 179
LIU Pei, LIAN Peng-yu Dynamic characteristics analysis of a frame structure with the main building and podium based on ambient vibration test data[J]. Journal of Vibration and Shock, 2016, 35 (10): 174- 179
[1] 黄毅鹏,胡冀苏,钱旭升,周志勇,赵文露,马麒,沈钧康,戴亚康. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J]. 浙江大学学报(工学版), 2021, 55(1): 203-212.
[2] 孟祥传,周家作,韦昌富,陈盼,张坤,沈正艳. 基于广义Clapeyron方程的含盐土冻结特征曲线模型[J]. 浙江大学学报(工学版), 2020, 54(12): 2377-2385.
[3] 卫军,杜永潇,梁曼舒. 梁结构疲劳刚度退化对模态频率的影响[J]. 浙江大学学报(工学版), 2019, 53(5): 899-909.
[4] 祁云,孙大明,苏峙岳,乔鑫. 磁共振成像低温超导磁体冷却系统设计及数值分析[J]. 浙江大学学报(工学版), 2019, 53(5): 965-971.
[5] 赖小波,张学群,许茂盛. 胶质母细胞瘤多模态磁共振图像自动分割[J]. 浙江大学学报(工学版), 2019, 53(2): 355-363.
[6] 施春飞, 孙毅, 王晓萍. SPRi传感器的数据处理方法[J]. 浙江大学学报(工学版), 2018, 52(4): 657-662.
[7] 郝静, 杜太行, 江春冬, 陈通海. 调参级联随机共振系统加强策略[J]. 浙江大学学报(工学版), 2017, 51(10): 2084-2092.
[8] 刘海宾, 王勇, 马鹏磊, 谢玉东. 基于平行式振荡翼系统参数耦合分析[J]. 浙江大学学报(工学版), 2017, 51(1): 153-159.
[9] 李建, 刘猛, 段钰锋, 许超. 污泥掺混褐煤水热制固体燃料的理化特性[J]. 浙江大学学报(工学版), 2016, 50(2): 327-332.
[10] 毛华臻, 王飞, 毛飞燕, 池涌, 陆胜勇, 岑可法. 水热处理对污泥水分分布的影响[J]. 浙江大学学报(工学版), 2016, 50(12): 2283-2288.
[11] 刘阳, 于孝辉, 郭建炎. 磁共振电特性成像人体腹腔癌症仿真研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1959-1964.
[12] 张旭,刘建忠,吴君宏,赵琛杰,周俊虎,岑可法. 水分随煤阶及水热变化的核磁共振研究[J]. 浙江大学学报(工学版), 2016, 50(1): 123-128.
[13] 李秋顺,成荣,张旭霖,陈燕,史建国,李明宇,于永江,董文飞. 聚合物薄膜对表面等离子体共振光谱的调制[J]. 浙江大学学报(工学版), 2015, 49(9): 1796-1804.
[14] 邹云鹏, 康雁. 相位对比磁共振序列中的扰相梯度优化[J]. 浙江大学学报(工学版), 2015, 49(6): 1055-1060.
[15] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2015, 49(4): 792-797.