Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
对称布置2根单侧加劲肋的有效刚度
杨章, 童根树, 张磊
浙江大学 土木工程学系,浙江 杭州 310058
Effective Rigidity of two one-side stiffeners arranged symmetrically
YANG Zhang, TONG Gen shu, ZHANG Lei
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(950 KB)   HTML
摘要:

针对对称布置2根单侧加劲肋的加劲板在单轴受压屈曲分析中的有效刚度问题.用隔离体分析法,分别对加劲肋和被加劲板进行二阶分析,考虑加劲肋自由扭转、约束扭转和剪切变形的影响,通过板和加劲肋在连接处的位移协调条件,得到3种屈曲模态下加劲板的屈曲方程和加劲板参与加劲肋工作的有效宽度解析表达式,获得对称布置2根单侧加劲肋的有效扭转刚度和有效抗弯刚度的表达式,相比于布置一根加劲肋的加劲板的结果,两者有较大不同.与有限元模拟结果进行分析比对表明,获得的有效刚度公式具有良好精度,适用于任意开口和闭口截面的单侧加劲肋板.

Abstract:

The buckling of plates with two one-sided stiffeners arranged symmetrically under uniform compression was analyzed to determine the effective stiffness of one-side stiffeners. Second order analyses were conducted for the isolated stiffener and the plate acted by their interactive forces, and they are combined to satisfy the continuity conditions in the longitudinal strains and the deflections on the connecting line. The effect of the free and warping torsion and the shear deformation in the stiffener was included. The critical equations for 3 buckling modes were obtained. Analytic expression of the effective bending and torsion stiffness and the effective breadth were found for each bucking mode. Comparing the plate with only one one-sided stiffener, the effective widths of the plate taking part in the function of the stiffener were different. Comparing with the results of ANASYS analysis, the analytic solution has excellent accuracy regardless of the shapes of the stiffeners.

出版日期: 2016-08-01
:     
基金资助:

国家自然科学基金资助项目(51478421).

通讯作者: 童根树,男,教授,博导.ORCID: 0000-0001-5572-2068:     E-mail: tonggs@zju.edu.cn
作者简介: 杨章(1986—),男,博士生,从事钢板和加劲板稳定性等研究.ORCID: 0000-0002-6952-270X. E-mail:woodchuck228@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.08.004.

YANG Zhang, TONG Gen shu, ZHANG Lei. Effective Rigidity of two one-side stiffeners arranged symmetrically. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.08.004.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.08.004        http://www.zjujournals.com/eng/CN/Y2016/V50/I8/1446

[1] JGJ 99-2015.高层民用建筑钢结构技术规程\[S\].北京.中国建筑工业出版社.2015.
JGJ 99-2015. Technical specification for steel structure of tall building \[S\]. Beijing. China Architecture&Building Press. 2015.
[2] 童根树,杨章,张磊.钢板剪力墙单侧加劲肋的有效抗弯刚度[J].浙江大学学报:工学版.2015,49(11): 2151-2158.
TONG gen shu, YANG zhang, ZHANG lei. Effective rigidity of oneside stiffeners in steel shear walls [J].Journal of Zhejiang University: Engineering Science. 2015, 49(11): 2151-2158.
[3] 杨章,童根树,张磊.钢板剪力墙任意布置单侧加劲肋的等效刚度[J].工业建筑.2016, 46(2):125-132.
YANG zhang, TONG genshu, ZHANG lei. Equivalent rigidity of oneside stiffeners placed in arbitrary position of steel shear wall [J]. Industrial Construction. 2016, 46(2): 125-132.
[4] 陶文登.钢梁腹板及竖向闭口加劲钢板剪力墙的弹性稳定性[D].杭州:浙江大学2013:  81-100.
TAO wendeng Elastic stability of girder web planels and steel shear walls vertically strengthened by closed section stiffeners \[D\]. Hang zhou: Zhejiang University, 2013, 81-100.
[5] 童根树.钢结构的平面内稳定[M]北京:中国建筑工业出版社,2005: 138-141.
[6] 童根树.钢结构的平面外稳定[M](修订版).北京:中国建筑工业出版社,2013:130131.
[7] TIMOSHENKO S P, GOODIER J N. Theory of Elasticity[M].New York: McGrawHill Book Company, 1951: 171-177.
[8] BULSON P S. The Stability of Flat Plates [M]. London: Chatto&Windus Ltd. 1970: 220-221.
[9] SEIDE P. The effect of longitudinal stiffeners located on one side of plate on the compressive buckling stress of the platestiffener combination [R]. 2873, Washington: NACA,19-53.
[10] OSAMA K. Bedair. A contribution to stability of stiffened plates under uniform compression[J]. Computers & Structures, 1998, 66(5): 535-570.
[11] WANG X, RAMMERSTORFER F.G. Determination of effective breadth and effective width of stiffened plates by finite stripe analyses[J]. Thinwalled strictures, 1996, 26 (4): 261-286.
[12] KATSIKADELIS J T, SAPOUNTZAKIS E. A realistic estimation of the effective breadth of ribbed plates[J]. International Journal of Solids and Structures, 2002, 39(4): 789-799.
[13] STEFANO G, MARCO G, CESARE M R. On the shear lag effective breadth concept for composite hull structures [J]. Ships and Offshore Structures, 2015, 10(3): 272-289.
[14] 聂建国,李法熊,樊建生,等.钢混凝土组合梁考虑剪力滞效应实用设计方法[J].工程力学,2011, 28(11): 45-51.
Nie Jianguo, Li Faxiong, Fan Jianshen. Practical design method for steelconcrete composite beam considering shear lag effect[J]. Engineering Mechanics, 2011, 28(11): 45-51.
[15] WADEE M A, FARSI M. Localglobal mode interaction in stringerstiffened plates [J]. ThinWalled Structures, 2014, 85: 419-430.
[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[8] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[9] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[10] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[11] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[12] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[13] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[14] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[15] 黄家辉, 冯冬芹. 广义收益信息物理系统脆弱性评估方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1119-1125.