Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1382-1392    DOI: 10.3785/j.issn.1008-973X.2023.07.013
土木工程     
基于渗透原理的可吸水模型根系研发与性能研究
赵俊键1,2(),梁腾1,*(),詹良通1,2,梁钧3,陈延博1,赵宇1,2,陈云敏1,2
1. 浙江大学 超重力研究中心,浙江 杭州 310058
2. 浙江大学 岩土工程研究所,浙江 杭州 310058
3. 香港科技大学 土木及环境工程系,香港 999077
Development and performance study of water uptake-able model root based on osmotic technique
Jun-jian ZHAO1,2(),Teng LIANG1,*(),Liang-tong ZHAN1,2,Kwan LEUNG ANTHONY3,Yan-bo CHEN1,Yu ZHAO1,2,Yun-min CHEN1,2
1. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China
 全文: PDF(2410 KB)   HTML
摘要:

为了模拟自然植物根系的吸水过程,探究其对周边土体水文力学特征的影响机制,利用3D打印技术,设计并制造基于正渗透原理的新型可吸水模型根系. 模型根系采用中空结构,侧壁开孔,外覆半透膜. 当内部灌注聚乙二醇(PEG)溶液时,PEG溶液和土中水分间存在的渗透压梯度驱使了模型根系吸水. 常重力模型根系吸水试验结果表明,在含砂粉质黏土中,循环浓度等效1500 kPa渗透压的PEG溶液可在根系附近土体中产生最大约120 kPa的基质吸力,该基质吸力超过了真空法模型根系的理论最大产生吸力. 通过在适当范围内调整PEG溶液的质量摩尔浓度,并控制溶液循环特征,模型根系可以具备不同的吸水能力,从而模拟不同的现实工况.

关键词: 生态岩土工程土体基质吸力模型根系渗透原理3D打印技术    
Abstract:

A new 3-D printed water uptake-able model root based on osmotic technique was designed and manufactured in order to simulate the effects of water uptake by real plant roots and its influence on hydrological and mechanical properties of the surrounding soil. The model root was designed with a perforated hollow structure and wrapped with a semi-permeable membrane. Water was absorbed from soil by the osmotic pressure gradient between PEG solution and soil water when filled with polyethylene glycol (PEG) solution inside. Results of 1-g water uptake tests in silty clay with sand showed that circulating PEG solution with a concentration equivalent to an osmotic pressure of 1500 kPa produced a maximum soil matric suction of approximately 120 kPa near the model root, overcoming the suction inducing limit of existing water uptake-able model root using vacuum technique. The model root could possess varied water uptake potential, hence simulate different evaporation scenarios through adjusting the molality of solute PEG within proper range and controlling solution circulating properties.

Key words: soil bioengineering    soil matric suction    model root    osmotic technique    3D-printing technique
收稿日期: 2022-07-19 出版日期: 2023-07-17
CLC:  TU 43  
基金资助: 国家自然科学基金资助项目(41961144018, 52008368, 51988101, 51922112);香港研究资助局项目(C6006-20G)
通讯作者: 梁腾     E-mail: zhaojunjian@zju.edu.cn;tliang@zju.edu.cn
作者简介: 赵俊键(1997—),男,硕士生,从事植被护坡研究. orcid. org/0000-0003-1732-1532. E-mail: zhaojunjian@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵俊键
梁腾
詹良通
梁钧
陈延博
赵宇
陈云敏

引用本文:

赵俊键,梁腾,詹良通,梁钧,陈延博,赵宇,陈云敏. 基于渗透原理的可吸水模型根系研发与性能研究[J]. 浙江大学学报(工学版), 2023, 57(7): 1382-1392.

Jun-jian ZHAO,Teng LIANG,Liang-tong ZHAN,Kwan LEUNG ANTHONY,Yan-bo CHEN,Yu ZHAO,Yun-min CHEN. Development and performance study of water uptake-able model root based on osmotic technique. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1382-1392.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.013        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1382

图 1  PEG 20 000溶液的质量摩尔浓度-白利度校准结果
图 2  新型3D打印根系模型的示意图
图 3  试验土样的颗粒级配曲线
项目 参数 实测值
基本土性参数 相对密度Gs 2.676
最大干密度ρdmax/(g·cm?3) 1.6
水的最优质量分数wopt/% 19.5
w2/% 16
w0.06/% 63
w0.002/% 21
D10/mm 0.001
D30/mm 0.004
D60/mm 0.01
塑限PL/% 26.42
液限LL/% 39.97
塑性指数PI/% 13.55
水文特性参数
(ρd =1.4 g/cm3)
饱和渗透系数ks/(m·s?1 3×10?8
进气值AEV/kPa 20
水的饱和体积分数φs/% 0.47(脱湿),0.41(吸湿)
水的残余体积分数φr/% 0.10(脱湿),0.10(吸湿)
α/kPa?1 0.035(脱湿),0.045(吸湿)
n 1.26(脱湿),1.24(吸湿)
m 0.21(脱湿),0.19(吸湿)
表 1  试验土样参数汇总
图 4  试验土样干湿过程土水特性曲线(ρd = 1.4 g/cm3)
图 5  模型根系与自然根系、FDM打印ABS塑料根系及其他材料的强度参数对比(修改自文献[20])
图 6  模型根系常重力吸水试验系统的示意图
图 7  常重力模型根系吸水试验布置的示意图
试验ID p/kPa b/(mol·kg?1) 溶液循环
R-01 0
R-02 1500 0.01915
R-03 750 0.014 00
R-04 3000 0.02675
R-05 1500 0.01915
表 2  常重力室内模型试验组的设置汇总
图 8  土体基质吸力时程的变化情况
图 9  模型根系吸水前、后的土体垂直基质吸力分布
图 10  模型根系吸水前、后的土体水平基质吸力分布
图 11  试验土体非饱和渗透系数随基质吸力变化的情况
图 12  根系吸水浓差极化现象的示意图
图 13  模型根系产生最大土体基质吸力剖面与自然植株的对比
1 吴宏伟 大气–植被–土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39 (1): 1- 47
CHARLES WANG-WAI Ng Atmosphere-plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (1): 1- 47
2 孔纲强, 文磊, 刘汉龙, 等 植物根系分布形态及含根复合土强度特性试验[J]. 岩土力学, 2019, 40 (10): 3717- 3723
KONG Gang-qiang, WEN Lei, LIU Han-long, et al Strength properties of root compound soil and morphological observation of plant root[J]. Rock and Soil Mechanics, 2019, 40 (10): 3717- 3723
3 焦卫国, 詹良通, 季永新, 等 植被对土质覆盖层水分运移和存储影响试验研究[J]. 岩土工程学报, 2020, 42 (7): 1268- 1275
JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al Experimental study on effects of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (7): 1268- 1275
4 王一冰, 吴美苏, 周成 组合根系加固坡土的直剪试验及数值模拟[J]. 岩土工程学报, 2020, 42 (增1): 177- 182
WANG Yi-bing, WU Mei-su, ZHOU Cheng Direct shear tests and numerical simulation on slope soils reinforced by composite roots[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (增1): 177- 182
5 BORDOLOI S, NG C W W The effects of vegetation traits and their stability functions in bio-engineered slopes: a perspective review[J]. Engineering Geology, 2020, 275: 105742
doi: 10.1016/j.enggeo.2020.105742
6 SMETHURST J A, BRIGGS K M, POWRIE W, et al Mechanical and hydrological impacts of tree removal on a clay fill railway embankment[J]. Géotechnique, 2015, 65 (11): 869- 882
7 BOLDRIN D, LEUNG A K, BENGOUGH A G Hydro-mechanical reinforcement of contrasting woody species: a full-scale investigation of a field slope[J]. Géotechnique, 2021, 71 (11): 970- 984
8 STOKES A, DOUGLAS G B, FOURCAUD T, et al Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners[J]. Plant and Soil, 2014, 377: 1- 23
9 TAYLOR R N. Geotechnical centrifuge technology [M]. London: Blackie Academic & Professional, 1995.
10 陈云敏 离心超重力实验: 探索多相介质演变的革命性手段[J]. 浙江大学学报: 工学版, 2020, 54 (4): 631- 632
CHEN Yun-min Centrifugal supergravity experiment: a revolutionary means to explore the evolution of multiphase media[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 631- 632
11 SONNENBERG R, BRANSBY M F, HALLETT P D, et al Centrifuge modelling of soil slopes reinforced with vegetation[J]. Canadian Geotechnical Journal, 2010, 47 (12): 1415- 1430
doi: 10.1139/T10-037
12 LEUNG A K, KAMCHOOM V, NG C W W Influences of root-induced soil suction and root geometry on slope stability: a centrifuge study[J]. Canadian Geotechnical Journal, 2017, 54 (3): 291- 303
doi: 10.1139/cgj-2015-0263
13 刘琪. 植被根系对边坡稳定性影响的离心模型试验研究[D]. 成都: 西南交通大学, 2020.
LIU Qi. Centrifugal model test study on the influence of vegetation roots on slope stability [D]. Chengdu: Southwest Jiaotong University, 2020.
14 LAN H, WANG D, HE S, et al Experimental study on the effects of tree planting on slope stability[J]. Landslides, 2020, 17 (4): 1021- 1035
doi: 10.1007/s10346-020-01348-z
15 LIANG T, KNAPPETT J A, DUCKETT N Modelling the seismic performance of rooted slopes from individual root–soil interaction to global slope behaviour[J]. Géotechnique, 2015, 65 (12): 995- 1009
16 LIANG T, KNAPPETT J A Centrifuge modelling of the influence of slope height on the seismic performance of rooted slopes[J]. Géotechnique, 2017, 67 (10): 855- 869
17 LIANG T, BENGOUGH A G, KNAPPETT J A, et al Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge[J]. Ecological Engineering, 2017, 109: 207- 227
doi: 10.1016/j.ecoleng.2017.06.067
18 ASKARINEJAD A, SPRINGMAN S. Centrifuge modelling of the effects of vegetation on the response of a silty sand slope subjected to rainfall [C]// Computer Methods and Recent Advances in Geomechanics. Kyoto: CRC Press, 2014: 1339–1344.
19 SONNENBERG R, BRANSBY M F, BENGOUGH A G, et al Centrifuge modelling of soil slopes containing model plant roots[J]. Canadian Geotechnical Journal, 2012, 49 (1): 1- 17
doi: 10.1139/t11-081
20 LIANG T, KNAPPETT J A, BENGOUGH A G, et al Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides[J]. Landslides, 2017, 14 (5): 1747- 1765
doi: 10.1007/s10346-017-0802-2
21 ZHANG X, KNAPPETT J A, LEUNG A K, et al. Centrifuge modelling of root–soil interaction of laterally loaded trees under different loading conditions [EB/OL]. (2022-03-03). https://doi.org/10.1680/jgeot.21.00088.
22 BIDDLE G. Tree root damage to buildings [C]// Expansive Clay Soils and Vegetative Influence on Shallow Foundations. Houston: ASCE, 2001: 1–23.
23 BRIGGS K M, SMETHURST J A, POWRIE W, et al Managing the extent of tree removal from railway earthwork slopes[J]. Ecological Engineering, 2013, 61: 690- 696
doi: 10.1016/j.ecoleng.2012.12.076
24 NG C W W, YU R A novel technique to model water uptake by plants in geotechnical centrifuge[J]. Géotechnique Letters, 2014, 4 (4): 244- 249
25 NG C W W, LEUNG A K, KAMCHOOM V, et al A novel root system for simulating transpiration-Induced soil suction in centrifuge[J]. Geotechnical Testing Journal, 2014, 37 (5): 733- 747
doi: 10.1520/GTJ20130116
26 MCCUTCHEON J R, MCGINNIS R L, ELIMELECH M Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance[J]. Journal of Membrane Science, 2006, 278 (1/2): 114- 123
27 DELAGE P, CUI Y J An evaluation of the osmotic method of controlling suction[J]. Geomechanics and Geoengineering, 2008, 3 (1): 1- 11
doi: 10.1080/17486020701868379
28 TRIPATHY S, REES S W Suction of some polyethylene glycols commonly used for unsaturated soil testing[J]. Geotechnical Testing Journal, 2013, 36 (5): 768- 780
doi: 10.1520/GTJ20120041
29 HASSE H, KANY H P, TINTINGER R, et al Osmotic virial coefficients of aqueous poly(ethylene glycol) from laser-light scattering and isopiestic measurements[J]. Macromolecules, 1995, 28 (10): 3540- 3552
doi: 10.1021/ma00114a007
30 WILLIAMS J, SHAYKEWICH C F An evaluation of polyethylene glycol (PEG) 6000 and PEG 20, 000 in the osmotic control of soil water matric potential[J]. Canadian Journal of Soil Science, 1969, 49 (3): 397- 401
doi: 10.4141/cjss69-054
31 STOKES A, MATTHECK C Variation of wood strength in tree roots[J]. Journal of Experimental Botany, 1996, 47 (5): 693- 699
doi: 10.1093/jxb/47.5.693
32 VAN GENUCHTEN M T A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44 (5): 892- 898
33 TAKE W A, BOLTON M D Tensiometer saturation and the reliable measurement of soil suction[J]. Géotechnique, 2003, 53 (2): 159- 172
34 BOLDRIN D, LEUNG A K, BENGOUGH A G. Hydrologic reinforcement induced by contrasting woody species during summer and winter [J]. Plant and Soil, 2018, 427(1/2): 369–390.
35 DAVID T S, HENRIQUES M O, KURZ-BESSON C, et al Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought[J]. Tree Physiology, 2007, 27 (6): 793- 803
doi: 10.1093/treephys/27.6.793
36 CHUN Y, MULCAHY D, ZOU L, et al A short review of membrane fouling in forward osmosis processes[J]. Membranes, 2017, 7 (2): 30
doi: 10.3390/membranes7020030
37 TARANTINO A, MONGIOVÌ L. Experimental investigations on the stress variables governing unsaturated soil behaviour at medium to high degrees of saturation [C]// Proceedings of Experimental Evidence and Theoretical Approaches in Unsaturated Soils. Trento: Taylor & Francis, 2000: 3-19.
38 TRIPATHY S, TADZA M Y M, THOMAS H R On the intrusion of polyethylene glycol during osmotic tests[J]. Géotechnique Letters, 2011, 1 (3): 47- 51
39 SCHAAP M G, LEIJ F J Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model[J]. Soil Science Society of America Journal, 2000, 64 (3): 843- 851
doi: 10.2136/sssaj2000.643843x
40 NG C W W, GARG A, LEUNG A K, et al Relationships between leaf and root area indices and soil suction induced during drying–wetting cycles[J]. Ecological Engineering, 2016, 91: 113- 118
doi: 10.1016/j.ecoleng.2016.02.005
41 ZHOU W H, HE S Y, GARG A, et al Field monitoring of suction in the vicinity of an urban tree: exploring termite infestation and the shading effects of tree canopy[J]. Acta Geotechnica, 2020, 15 (5): 1341- 1361
doi: 10.1007/s11440-019-00810-0
42 ISHAK M F, ZOLKEPLI M F, YUNUS M Y M, et al Verification of tree induced suction with numerical model[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2021, 121: 102980
doi: 10.1016/j.pce.2021.102980
43 POLLEN-BANKHEAD N, SIMON A Hydrologic and hydraulic effects of riparian root networks on streambank stability: is mechanical root-reinforcement the whole story?[J]. Geomorphology, 2010, 116 (3/4): 353- 362
[1] 王珂,吴君涛,于喆,项驰轩,王奎华. 混凝土基桩超声波层析成像技术优化[J]. 浙江大学学报(工学版), 2023, 57(4): 805-813.
[2] 王震,丁智,张霄,周奇辉,张成全. 考虑椭圆度缺陷的盾构管片结构极限承载性能研究[J]. 浙江大学学报(工学版), 2022, 56(11): 2290-2302.
[3] 刘宏扬,罗强,王威龙,李品锋,马宏飞,张东卿. 土工离心模型试验中路堤分层填筑装置的研制[J]. 浙江大学学报(工学版), 2022, 56(8): 1504-1513.
[4] 龚涛,刘开富,谢新宇,许纯泰,娄扬,郑凌逶. 基于次加载面摩擦模型的接触面剪切特性研究[J]. 浙江大学学报(工学版), 2022, 56(7): 1328-1335, 1352.
[5] 陈伟航,罗强,王腾飞,蒋良潍,张良. 基于Bi-LSTM的非等时距路基工后沉降滚动预测[J]. 浙江大学学报(工学版), 2022, 56(4): 683-691.
[6] 蒋佳琪,徐日庆,裘志坚,詹晓波,汪悦,成广谋. 超固结土的蛋形弹塑性本构模型[J]. 浙江大学学报(工学版), 2021, 55(8): 1444-1452.
[7] 张春新,朱鸿鹄,李豪杰,张巍,刘春. 支护压力控制下隧道周围砂土变形破坏物质点法模拟[J]. 浙江大学学报(工学版), 2021, 55(7): 1317-1326.
[8] 应宏伟,王迪,许鼎业,章丽莎. 动态承压水作用下考虑土体非线性的基坑弱透水层出逸比降研究[J]. 浙江大学学报(工学版), 2020, 54(12): 2356-2363.
[9] 李亚峰,聂如松,冷伍明,程龙虎,梅慧浩,董俊利. 间歇性循环荷载作用下细粒土的变形特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2109-2119.
[10] 丁绚晨,陈育民,张鑫磊. 微生物加固钙质砂环剪试验研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1690-1696.
[11] 郑晴晴,夏唐代,张孟雅,周飞. 间歇性循环荷载下原状淤泥质软黏土应变预测模型[J]. 浙江大学学报(工学版), 2020, 54(5): 889-898.
[12] 曹卫平,夏冰,葛欣. 水平受荷斜桩双曲线型p-y曲线的构建及其应用[J]. 浙江大学学报(工学版), 2019, 53(10): 1946-1954.
[13] 陈瑶,蔡袁强,曹志刚,王海江. 不平顺路面对交通荷载引起的地基振动影响[J]. 浙江大学学报(工学版), 2019, 53(6): 1031-1039.
[14] 胡亚元,王超. 基于变形功的有效应力力学机理探究[J]. 浙江大学学报(工学版), 2019, 53(5): 925-931.
[15] 黄博,廖凯龙,赵宇,蒋建群. 考虑河谷地形影响的多层框架结构地震易损性[J]. 浙江大学学报(工学版), 2019, 53(4): 692-701.