Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1374-1381    DOI: 10.3785/j.issn.1008-973X.2023.07.012
土木工程     
方桩-水泥土接触面摩擦特性试验研究
任建飞1,2(),周佳锦1,2,*(),龚晓南1,2,俞建霖1,2
1. 浙江大学 滨海与城市岩土工程研究中心,浙江 杭州 310058
2. 浙江省城市地下空间开发工程技术研究中心,浙江 杭州 310058
Experimental study on frictional capacity of square pile-cemented soil interface
Jian-fei REN1,2(),Jia-jin ZHOU1,2,*(),Xiao-nan GONG1,2,Jian-lin YU1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Space Development of Zhejiang Province, Hangzhou 310058, China
 全文: PDF(1508 KB)   HTML
摘要:

通过一系列三维桩土接触面剪切试验,研究方桩–水泥土接触面的摩擦特性,主要研究方桩边长、水泥土龄期对接触面摩擦特性的影响. 研究结果表明,方桩–水泥土接触面最大桩顶荷载随着方桩边长的增加而呈现先增大后减小的趋势,方桩–水泥土接触面最大桩顶荷载随着养护时间的增加而增加. 方桩–水泥土接触面的最大侧摩阻力随着方桩边长的增加而减小. 方桩边长的增加,即水泥土厚度的减小,使得方桩–水泥土接触面的破坏模式由渐进破坏转变为脆性破坏. 方桩–水泥土接触面最大侧摩阻力随着养护时间的增加而增加,即最大侧摩阻力随着水泥土强度的增加而增大. 在剪切试验过程中,方桩角点处出现应力集中,不利于方桩–水泥土接触面摩擦特性的发挥.

关键词: 静钻根植桩方桩–水泥土接触面三维剪切试验方桩边长龄期    
Abstract:

A series of three-dimensional pile-soil interface shear tests were conducted to analyze the frictional capacity of square pile-cemented soil interface. The effects of side length of square pile and curing time on frictional capacity of interface were mainly analyzed. The test results show that the maximum load of square pile-cemented soil interface increased first and then decreased with the increase of side length of square pile. The maximum load of square pile-cemented soil interface increased with curing time. The maximum skin friction of square pile-cemented soil interface decreased with the increase of side length of square pile. The increase of the side length of square pile (i.e. the thickness of cemented soil) made the failure mode of square pile-cemented soil interface change from progressive failure to brittle failure. The maximum skin friction of square pile-cemented soil interface increased with curing time, as the maximum skin friction increased with the increase of cemented soil strength. The stress concentration occurred at the corners of the square pile during the shear tests, which hampered the frictional capacity of square pile-cemented soil interface.

Key words: pre-bored grouted planted pile    square pile-cemented soil interface    three-dimensional interface shear test    side length of square pile    curing time
收稿日期: 2022-08-12 出版日期: 2023-07-17
CLC:  TU 473  
基金资助: 国家自然科学基金资助项目(52108350; 51978610; 52078457);中央高校基本科研业务费资助项目(2021QNA402)
通讯作者: 周佳锦     E-mail: 22012008@zju.edu.cn;zhoujiajin@zju.edu.cn
作者简介: 任建飞(1998—),男,硕士生,从事静钻根植桩的研究. orcid.org/0000-0002-8831-7306. E-mail: 22012008@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
任建飞
周佳锦
龚晓南
俞建霖

引用本文:

任建飞,周佳锦,龚晓南,俞建霖. 方桩-水泥土接触面摩擦特性试验研究[J]. 浙江大学学报(工学版), 2023, 57(7): 1374-1381.

Jian-fei REN,Jia-jin ZHOU,Xiao-nan GONG,Jian-lin YU. Experimental study on frictional capacity of square pile-cemented soil interface. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1374-1381.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.012        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1374

图 1  剪切试验的示意图
图 2  不同边长方桩的照片
图 3  方桩–水泥土接触面试样的照片
图 4  荷载-位移曲线(养护时间:3 d)
图 5  边长为36 mm的方桩剪切试验后的照片
图 6  边长为45.5 mm的方桩剪切试验后的照片
图 7  荷载-位移曲线(养护时间:7 d)
图 8  荷载-位移曲线(养护时间:14 d)
图 9  侧摩阻力-相对位移曲线(养护时间:3 d)
图 10  侧摩阻力-相对位移曲线(养护时间:7 d)
图 11  侧摩阻力-相对位移曲线(养护时间:14 d)
图 12  极限侧摩阻力-边长的关系曲线
图 13  归一化最大侧摩阻力-水泥土强度的关系
1 FLEMING K, WELTMAN A, RANDOLPH M, et al. Piling engineering [M]. 3rd ed. London: Taylor & Francis, 2009.
2 WHITE D, FINLAY T, BOLTON M, et al. Press-in piling: ground vibration and noise during pile installation [EB/OL]. [2022-08-01]. https://ascelibrary.org/doi/abs/10.1061/40601%28256%2926.
3 周佳锦, 龚晓南, 王奎华, 等 静钻根植竹节桩抗压承载性能[J]. 浙江大学学报: 工学版, 2014, 48 (5): 835- 842
ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al Performance of static drill rooted nodular piles under compression[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (5): 835- 842
4 周佳锦, 龚晓南, 王奎华, 等 静钻根植竹节桩在软土地基中的应用及其承载力计算[J]. 岩石力学与工程学报, 2014, 33 (Supple.2): 4359- 4366
ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al Application of static drill rooted precast nodular pile in soft soil foundation and calculation for bearing capacity[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (Supple.2): 4359- 4366
5 周佳锦, 龚晓南, 王奎华, 等 静钻根植竹节桩抗拔承载性能试验研究[J]. 岩土工程学报, 2015, 37 (3): 570- 576
ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al Behavior of the static drill rooted nodular piles under tension[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (3): 570- 576
doi: 10.11779/CJGE201503024
6 周佳锦, 龚晓南, 王奎华, 等 层状地基中静钻根植竹节桩单桩沉降计算[J]. 岩土力学, 2017, 38 (1): 109- 116
ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al A simplified approach to calculating settlement of a single pre-bored grouting planted nodular pile in layered soils[J]. Rock and Soil Mechanics, 2017, 38 (1): 109- 116
7 ZHOU J, GONG X, WANG K, et al Testing and modeling the behavior of pre-bored grouting planted piles under compression and tension[J]. Acta Geotechnica, 2017, 12 (5): 1061- 1075
8 ZHOU J, GONG X, ZHANG R Model tests to compare the behavior of pre-bored grouted planted piles and wished-in-place concrete pile in dense sand[J]. Soils and Foundations, 2019, 59 (1): 84- 96
doi: 10.1016/j.sandf.2018.09.003
9 ZHOU J, GONG X, ZHANG R, et al Field behavior of pre-bored grouted planted nodular pile embedded in deep clayey soil[J]. Acta Geotechnica, 2020, 15 (7): 1847- 1857
doi: 10.1007/s11440-019-00891-x
10 ZHOU J, YU J, GONG X, et al Field study on the behavior of pre-bored grouted planted pile with enlarged grout base[J]. Acta Geotechnica, 2021, 16 (10): 3327- 3338
doi: 10.1007/s11440-021-01208-7
11 ZHOU J, GONG X, WANG K, et al Shaft capacity of the pre-bored grouted planted pile in dense sand[J]. Acta Geotechnica, 2018, 13 (5): 1227- 1239
doi: 10.1007/s11440-018-0643-8
12 TOMLINSON M. Pile design and construction practice [M]. 3rd ed. London: Palladin, 1987.
13 RANDOLPH M Science and empiricism in pile foundation design[J]. Geotechnique, 2003, 53 (10): 847- 875
doi: 10.1680/geot.2003.53.10.847
14 JARDINE R, CHOW F, OVERY R, et al. ICP design methods for driven piles in sands and clays [M]. London: Thomas Telford, 2005.
15 ZHOU J, YU J, GONG X, et al The effect of cemented soil strength on the frictional capacity of precast concrete pile–cemented soil interface[J]. Acta Geotechnica, 2020, 15 (11): 3271- 3282
16 WILLIAMS A, JOHNSTON I, DONANLD I. The design of socketed piles in weak rock [C]// International Conference on Structural Foundations on Rock. Sydney: [s. n. ], 1980: 327–347.
17 O’ NEILL M, TOWNSEND F, HASSAN K, et al. Load transfer for drilled shafts in intermediate geomaterials: FHWA-RD-95-172 [R]. [S. l. ]: U. S. Department of Transportation, 1995.
18 NAM M, VIPULANANDAN C Roughness and unit side resistances of drilled shafts socketed in clay shale and limestone[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134 (9): 1272- 1279
doi: 10.1061/(ASCE)1090-0241(2008)134:9(1272)
19 SEIDEL J, COLLINGWWOOD B A new socket roughness factor for prediction of rock socket shaft resistance[J]. Canadian Geotechnical Journal, 2001, 38 (1): 138- 153
doi: 10.1139/t00-083
20 ASEM P, GARDONI P Evaluation of peak side resistance for rock socketed shafts in weak sedimentary rock from an extensive database of published field load tests: a limit state approach[J]. Canadian Geotechnical Journal, 2019, 56 (12): 1816- 1831
doi: 10.1139/cgj-2018-0590
21 SAIANG D, MALMGREN L, NORDLUND E Laboratory tests on shotcrete-rock joints in direct shear, tension and compression[J]. Rock Mechanics and Rock Engineering, 2005, 38 (4): 275- 297
doi: 10.1007/s00603-005-0055-6
22 TIAN H, CHEN W, YANG D, et al Experimental and numerical analysis of the shear behaviour of cemented concrete–rock joints[J]. Rock Mechanics and Rock Engineering, 2015, 48 (1): 213- 222
doi: 10.1007/s00603-014-0560-6
23 ZHOU J, YU J, GONG X, et al Field tests on behavior of pre-bored grouted planted pile and bored pile embedded in deep soft clay[J]. Soils and Foundations, 2020, 60 (2): 551- 561
doi: 10.1016/j.sandf.2020.03.013
24 刘清瑶, 周佳锦, 龚晓南, 等 软土地基中预应力竹节桩承载性能数值模拟[J]. 湖南大学学报: 自然科学版, 2023, 50 (3): 235- 244
LIU Qing-yao, ZHOU Jia-jin, GONG Xiao-nan, et al Numerical simulation on the bearing capacity of pre-stressed high strength concrete nodular pile in soft soil area[J]. Journal of Hunan University: Natural Sciences, 2023, 50 (3): 235- 244
25 俞建霖, 徐嘉诚, 周佳锦, 等 混凝土芯水泥土复合桩混凝土-水泥土界面摩擦特性试验研究[J]. 土木工程学报, 2022, 55 (8): 93- 104
YU Jian-lin, XU Jia-cheng, ZHOU Jia-jin, et al Experimental study of frictional capacity of concrete-cemented soil interface of concrete-cored cemented soil column[J]. China Civil Engineering Journal, 2022, 55 (8): 93- 104
[1] 卢春鹏,刘杏红,赵志方,马刚,金瑞鑫,常晓林. 热膨胀系数时变性对混凝土温度应力仿真影响[J]. 浙江大学学报(工学版), 2019, 53(2): 284-291.
[2] 朱剑锋,庹秋水,邓温妮,饶春义,刘浩旭. 镁质水泥复合固化剂固化有机质土的抗压强度模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2168-2174.
[3] 王忠瑾, 张日红, 王奎华, 方鹏飞, 谢新宇, 徐韩强, 李金柱. 能源载体条件下静钻根植桩承载特性[J]. 浙江大学学报(工学版), 2019, 53(1): 11-18.
[4] 胡倩筠, 常晓林, 冯楚桥, 周伟, 马刚. 基于性能演变理论的混凝土细观损伤特性研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1596-1604.
[5] 柯瀚,王文芳,魏长春,陈云敏,詹良通. 填埋体饱和渗透系数影响因素室内研究[J]. J4, 2013, 47(7): 1164-1170.
[6] 金南国 金贤玉 沈建 田野. 早龄期混凝土软化关系的数值分析[J]. , 2009, 43(4): 732-737.
[7] 田野 金南国 金贤玉. 混凝土特征拉应变随龄期发展规律研究[J]. J4, 2008, 42(6): 1076-1079.
[8] 詹良通 魏海云 陈云敏 朱水元 柯瀚. 垃圾原状样的力学压缩性及其与填埋龄期的关系[J]. J4, 2008, 42(2): 353-359.
[9] 金南国 金贤玉 吴伟河 田野. 等效龄期法在混凝土早龄期温度裂缝控制中的应用[J]. J4, 2008, 42(1): 44-47.
[10] 徐日庆 郭印 刘增永. 人工制备有机质固化土力学特性试验研究[J]. J4, 2007, 41(1): 109-113.
[11] 曲蒙 金南国 金贤玉 田野. 早龄期混凝土三点弯曲试验梁断裂的数值分析[J]. J4, 2006, 40(7): 1224-1229.