Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 284-291    DOI: 10.3785/j.issn.1008-973X.2019.02.011
土木工程、交通工程     
热膨胀系数时变性对混凝土温度应力仿真影响
卢春鹏1(),刘杏红1,赵志方2,*(),马刚1,金瑞鑫2,常晓林1
1. 武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072
2. 浙江工业大学 建筑工程学院,浙江 杭州 310014
Effect of time-varying thermal expansion coefficient on thermal stress simulation of concrete
Chun-peng LU1(),Xing-hong LIU1,Zhi-fang ZHAO2,*(),Gang MA1,Rui-xin JIN2,Xiao-lin CHANG1
1. State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
2. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(1424 KB)   HTML
摘要:

已有试验研究表明,混凝土的热膨胀系数具有明显的随龄期发展的特性. 为了研究混凝土热膨胀系数时变特性,以及更好地模拟混凝土早龄期温度应力,分析热膨胀系数时变效应对混凝土温度应力仿真的影响,采用温度应力试验机进行试验,对混凝土热膨胀系数进行测定. 引入等效龄期的概念,将混凝土早期变形分离为温度变形与自生体积变形,建立热膨胀系数与等效龄期之间的数学模型. 通过室内试验试件的有限元数值模拟,验证热膨胀系数时变模型的合理性. 将时变模型应用于大岗山特高拱坝施工期的温度应力仿真,通过对比研究,分析热膨胀系数时变效应对混凝土温度应力的影响. 研究表明,混凝土热膨胀系数在早龄期变化较大,考虑其时变性对仿真防裂意义重大. 尤其对于受通水等影响早期温降速率较快的混凝土,考虑热膨胀系数时变效应进行仿真计算应力水平较传统方法偏高,据此计算结果进行防裂设计更安全.

关键词: 混凝土温度应力仿真热膨胀系数等效龄期温度-应力试验机    
Abstract:

Previous studies have shown that the thermal expansion coefficient of concrete has obvious age-dependent characteristic. An experiment based on temperature-stress testing machine was designed to measure the thermal expansion coefficient, in order to study the time-varying characteristic of the thermal expansion coefficient of concrete and its effect on the thermal stress simulation, and to simulate the early-age temperature stress of concrete more accurately. The concept about the equivalent age was introduced. The temperature deformation and self-grown volume deformation were separated successfully. A mathematical model between the thermal expansion coefficient and the equivalent age was established. The rationality of this model was verified through the simulation of the laboratory test. Additionally, the effect of time-varying thermal expansion coefficient on temperature-stress simulation was discussed through the simulation of temperature-stress of Dagangshan super high arch dam. Results showed that the coefficient of thermal expansion of concrete changed greatly in early age. Considering the time-varying property of the coefficient of thermal expansion is significant for simulation and crack prevention. The simulated stress level calculated by considering the time-varying effect was higher than that of the traditional method, especially for the concrete with fast temperature drop rate at early age due to water flow. It is safer to carry out crack prevention design according to the new method.

Key words: concrete    simulation of thermal stress    thermal expansion coefficient    equivalent age    temperature-stress testing machine
收稿日期: 2018-06-26 出版日期: 2019-02-21
CLC:  TV 431  
通讯作者: 赵志方     E-mail: luchunpeng@whu.edu.cn;zhaozhifang7@126.com
作者简介: 卢春鹏(1994—),男,硕士生,从事高坝结构设计理论与数值仿真研究. orcid.org/0000-0001-6838-7772. E-mail: luchunpeng@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
卢春鹏
刘杏红
赵志方
马刚
金瑞鑫
常晓林

引用本文:

卢春鹏,刘杏红,赵志方,马刚,金瑞鑫,常晓林. 热膨胀系数时变性对混凝土温度应力仿真影响[J]. 浙江大学学报(工学版), 2019, 53(2): 284-291.

Chun-peng LU,Xing-hong LIU,Zhi-fang ZHAO,Gang MA,Rui-xin JIN,Xiao-lin CHANG. Effect of time-varying thermal expansion coefficient on thermal stress simulation of concrete. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 284-291.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.011        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/284

图 1  TSTM闭环测控系统原理图
水泥品种 水胶质量比 单位立方米混凝土材料用量/kg wB/%
水泥 粉煤灰 小石 中石 减水剂 引气剂
P.O.42.5 0.43 125 189 102 672 637 637 0.70 0.02
表 1  大岗山C18036粉煤灰混凝土配合比
图 2  2种模式下试件中心温度历程曲线
图 3  2种模式下自由试件实测自由应变
图 4  2种养护模式下试件中心温度与等效龄期关系
图 5  2种养护模式下自由试件的变形与等效龄期关系
te/h 计算值 拟合值 te/h 计算值 拟合值
7.5 34.7 31.6 25.5 5.6 7.1
8.5 21.9 22.0 78.5 6.4 6.1
9.5 15.4 16.2 130.5 7.2 6.1
10.5 10.8 15.6 180.5 8.3 6.1
12.5 9.7 12.3 204.5 7.0 6.1
14.5 7.6 10.4 228.5 5.3 6.1
18.5 4.6 8.4 ? ? ?
表 2  混凝土不同等效龄期下热膨胀系数
图 6  热膨胀系数与等效龄期关系曲线
图 7  温度-应力试验试件仿真模型
图 8  等效龄期与应变关系模拟曲线
图 9  考虑热膨胀系数时变特性的试件温度应力仿真结果
图 10  坝体有限元模型
参数 系数或
表达式
参数 参数值或表达式
\small$\rho {\rm{/({\rm kg}}} \cdot {{\rm{m}}^{ - 3}}{\rm{)}}$ 2 450 \small$\mu $ 0.2
\small$c{\rm{/(J}} \cdot {\rm k{g}^{ - 1}} \cdot {°{\rm{C}}^{ - 1}}{\rm{)}}$ 1 010 \small$\theta'/{^\circ {\rm{C}}}$ \setlength{\voffset}{0pt}\small$\theta'{\rm{ = }}24.5\left[1 - \exp\; ( - 0.37{t^{0.87}})\right]$
\small$\lambda {\rm{/(W}} \cdot {{\rm{m}}^{ - 1}} \cdot {°{\rm{C}}^{ - 1}}{\rm{)}}$ 2.64 \small$E/{\rm{GPa}}$ \setlength{\voffset}{0pt}\small$E{\rm{ = 28}}{\rm{.5}}\left[1 - \exp\; ( - 0.26{t^{0.11}})\right]$
表 3  C18036混凝土部分材料参数
图 11  基础约束区最大第一主应力包络图
图 12  非约束区最大第一主应力包络图
图 13  浇筑后28 d内温度-应力历程曲线
1 田斌, 夏颂佑, 鲁慎吾 高拱坝坝踵开裂机理研究进展[J]. 水电站设计, 1997, 13 (4): 1- 6
TIAN Bin, XIA Song-you, LU Shen-wu Cracking mechanism research progress of high arch dam heel[J]. Design of Hydroelectric Power Station, 1997, 13 (4): 1- 6
2 汝乃华, 姜忠胜. 大坝安全与事故: 拱坝 [M]. 北京: 中国水利水电出版社, 1995: 5–6.
3 ZHANG C, ZHOU W, MA G, et al A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes[J]. Computers and Concrete, 2015, 15 (4): 485- 501
doi: 10.12989/cac.2015.15.4.485
4 LIU X H, ZHANG C, CHANG X L, et al Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system[J]. Applied Thermal Engineering, 2015, 78: 449- 459
doi: 10.1016/j.applthermaleng.2014.12.050
5 ZHOU W, FENG C Q, LIU X H, et al A macro-meso chemo-physical analysis of early-age concrete based on a fixed hydration model[J]. Magazine of Concrete Research, 2016, 68 (19): 981- 994
doi: 10.1680/jmacr.15.00321
6 ZHOU W, TANG L W, LIU X H, et al. Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model [J]. International Journal of Impact Engineering, 2016, 95: 165–175.
7 ZHOU W, QI T Q, LIU X H, et al A hygro-thermo-chemical analysis of concrete at an early age and beyond under dry-wet conditions based on a fixed model[J]. International Journal of Heat and Mass Transfer, 2017, 115: 488- 499
8 江晨晖, 杨杨, 李鹏, 等 水泥砂浆的早龄期热膨胀系数的时变特征[J]. 硅酸盐学报, 2013, 41 (5): 605
JIANG Chen-hui, YANG Yang, LI Peng, et al Time dependence on thermal expansion behavior of cement mortar at early ages[J]. Journal of the Chinese Ceramic Society, 2013, 41 (5): 605
9 张国梁, 李松 用应变片测量水泥混凝土热膨胀系数的试验方法[J]. 城市道桥与防洪, 2012, (2): 112- 115
ZHANG Guo-liang, LI Song Test method of strain gauge to measure thermal expansion coefficient of cement concrete[J]. Urban Roads Bridges and Flood Control, 2012, (2): 112- 115
doi: 10.3969/j.issn.1009-7716.2012.02.041
10 SELLEVOLD E J, BJONTEGAARD O Coefficient of thermal expansion of cement paste and concrete: mechanisms of moisture interaction[J]. Materials and Structures, 2006, 39 (9): 809- 815
doi: 10.1617/s11527-006-9086-z
11 沈德建, 申嘉鑫, 黄杰, 等 早龄期及硬化阶段水泥基材料热膨胀系数研究[J]. 水利学报, 2012, 43: 153- 160
SHEN De-jian, SHEN Jia-xin, HUANG Jie, et al Research on current for determining coefficient of thermal expansion of cementbased materials at early ages and in hardening stage[J]. Journal of Hydraulic Engineering, 2012, 43: 153- 160
12 马新伟, 钮长仁 混凝土硬化早期热膨胀的量化方法研究[J]. 低温建筑技术, 2005, 43 (2): 8- 9
MA Xin-wei, NIU Chang-ren Quantification of thermal dilation of concrete at early age[J]. Low Temperature Architecture Technology, 2005, 43 (2): 8- 9
doi: 10.3969/j.issn.1001-6864.2005.02.004
13 JENSEN O M, HANSEN P F Influence of temperature on autogenous deformation and relative humidity change in hardening stage[J]. Cement and Concrete Research, 1999, 29 (4): 567
doi: 10.1016/S0008-8846(99)00021-6
14 KADA H, LACHEMI M, PETROV N, et al Determination of the coefficient of thermal expansion of high performance concrete initial setting[J]. Material and Structure, 2002, 35: 35- 41
doi: 10.1007/BF02482088
15 王贤磊. 混凝土温度线膨胀系数测定仪的研制与应用 [D]. 北京: 清华大学, 2005.
WANG Xian-lei. Development and application of an instrument for measuring the coefficient thermal expansion of concrete [D]. Beijing: Tsinghua University, 2005.
16 ZHOU W, ZHAO C, LIU X H, et al Mesoscopic simulation of thermo-mechanical behaviors in concrete under frost action[J]. Construction and Building Materials, 2017, 157: 117- 131
doi: 10.1016/j.conbuildmat.2017.09.009
17 崔溦, 冀天竹, 吴甲一 热膨胀系数对早期混凝土性态影响试验及数值模拟[J]. 同济大学学报: 自然科学版, 2016, 44 (3): 355- 362
CUI Wei, JI Tian-zhu, WU Jia-yi Experimental study and numerical simulation for the effect of thermal expansion coefficient on the behavior of early concrete[J]. Journal of Tongji University: Natural Science, 2016, 44 (3): 355- 362
18 ZHAO Z F, MAO K K, JI S W, et al. Adiabatic temperature rise model of ultra-high-volume fly ash conventional dam concrete and FEM simulation of the temperature history curve [C]// Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Vienna: ASCE, 2015: 1410–1419.
19 赵志方, 李超, 张振宇, 等 超高掺量粉煤灰大坝混凝土早龄期抗裂性研究[J]. 水力发电学报, 2016, 35 (7): 112- 119
ZHAO Zhi-fang, LI Chao, ZHANG Zhen-yu, et al Cracking resistance behaviors of ultra-high-volume fly ash dam concrete at early age[J]. Journal of Hydroelectric Engineering, 2016, 35 (7): 112- 119
20 陈波, 丁建彤, 蔡跃波, 等 基于温度-应力试验的混凝土早龄期应变分离及热膨胀系数计算[J]. 水利学报, 2016, 47 (2): 560- 565
CHEN Bo, DING Jian-tong, CAI Yue-bo, et al Strain separation and thermal coefficient calculation of early age concrete based on thermal stress test[J]. Journal of Hydraulic Engineering, 2016, 47 (2): 560- 565
21 SAUL A Principles underlying the steam curing of concrete at atmospheric pressure[J]. Magazine of Concrete Research, 1951, 2 (6): 127- 140
doi: 10.1680/macr.1951.2.6.127
22 ZHOU W, FENG C Q, LIU X H, et al Contrastive numerical investigations on thermo-structural behaviors in mass concrete with various cements[J]. Materials, 2016, 9 (5): 378
doi: 10.3390/ma9050378
23 朱伯芳. 大体积混凝土温度应力与温度控制 [M]. 北京: 中国水利水电出版社, 2012.
24 宋玲丽, 黎满林, 常晓林, 等 大岗山拱坝横缝开度仿真分析[J]. 武汉大学学报: 工学版, 2013, 43: 446- 450
SONG Lin-li, LI Man-lin, CHANG Xiao-lin, et al Simulation analysis of transverse joints aperture for Dagangshan arch dam[J]. Engineering Journal of Wuhan University, 2013, 43: 446- 450
[1] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[2] 王小虎,吉克尼都,陈珊,祁宇轩,彭宇,曾强. X射线透射成像技术原位追踪混凝土吸水过程[J]. 浙江大学学报(工学版), 2021, 55(4): 727-732.
[3] 宋鑫,樊玮洁,毛江鸿,金伟良. 基于多级电迁的混凝土内氯离子动态控制效果[J]. 浙江大学学报(工学版), 2021, 55(3): 511-518.
[4] 李睿鑫,邹贻权,胡大伟,周辉,王冲,周永祥,王祖琦. 高渗透压-硫酸盐侵蚀下混凝土时空劣化[J]. 浙江大学学报(工学版), 2021, 55(3): 539-547.
[5] 姚勇,杨贞军,张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9.
[6] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[7] 黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.
[8] 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟[J]. 浙江大学学报(工学版), 2020, 54(6): 1106-1114.
[9] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[10] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[11] 罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.
[12] 王海龙,吴远建,凌佳燕,孙晓燕. 锈蚀不锈钢筋与混凝土黏结性能退化[J]. 浙江大学学报(工学版), 2020, 54(5): 843-850.
[13] 夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.
[14] 孙晓燕,唐归,王海龙,汪群,张治成. 3D打印路径对混凝土拱桥结构力学性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2085-2091.
[15] 汪劲丰,张爱平,王文浩. 栓钉高度对栓钉连接件抗剪性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2076-2084.