Please wait a minute...
浙江大学学报(理学版)  2024, Vol. 51 Issue (2): 186-195    DOI: 10.3785/j.issn.1008-9497.2024.02.007
数学与计算机科学     
具有恐惧效应及修正的Holling-捕食者-食饵扩散模型的动力学分析
刘宇鹏(),曹倩(),包雄雄
长安大学 理学院,陕西 西安 710064
Dynamic analysis of a predator-prey diffusion model with fear effect and modification of Holling-
Yupeng LIU(),Qian CAO(),Xiongxiong BAO
School of Science,Chang'an University,Xi'an 710064,China
 全文: PDF(566 KB)   HTML( 3 )
摘要:

研究了在齐次Dirichlet边界条件下一类具有恐惧效应及修正的Holling-Ⅱ捕食者-食饵扩散模型。首先,利用极大值原理和比较定理给出模型的先验估计;然后,通过计算锥映射不动点指标,得到正解存在的充分条件,且根据线性稳定性理论,讨论了当H充分大时正解的稳定性;最后,借助谱分析和分支定理,以m为分支参数,讨论了局部分支解的存在性与稳定性。

关键词: 恐惧效应修正的Holling-Ⅱ功能反应函数稳定性局部分支解    
Abstract:

A Holling-Ⅱ predator-prey diffusion model with fear effect and modification under homogeneous Dirichlet boundary conditions is studied. Firstly, the prior estimation of the model is given by applying the maximum value principle and comparison theorem. Then, by calculating the fixed point index of the cone map, the sufficient condition for the existence of the positive solution is obtained. When H is sufficiently large, the stability of the positive solution is discussed according to the linear stability theory. Finally, by means of spectral analysis and branching theorem, the existence and stability of local branching solutions are discussed with m as the branching parameter.

Key words: fear effect    modified Holling-Ⅱ functional response function    stability    local branching solution
收稿日期: 2023-05-08 出版日期: 2024-03-08
CLC:  O 175.26  
基金资助: 国家自然科学基金资助项目(12101075);长安大学研究生科研创新实践项目(300103723070)
通讯作者: 曹倩     E-mail: yupeng12062023@126.com;mathcq19@chd.edu.cn
作者简介: 刘宇鹏(1998—),ORCID:https://orcid.org/0009-0005-0382-7884,男,硕士,主要从事微分方程动力学及应用研究,E-mail:yupeng12062023@126.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘宇鹏
曹倩
包雄雄

引用本文:

刘宇鹏,曹倩,包雄雄. 具有恐惧效应及修正的Holling-捕食者-食饵扩散模型的动力学分析[J]. 浙江大学学报(理学版), 2024, 51(2): 186-195.

Yupeng LIU,Qian CAO,Xiongxiong BAO. Dynamic analysis of a predator-prey diffusion model with fear effect and modification of Holling-. Journal of Zhejiang University (Science Edition), 2024, 51(2): 186-195.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2024.02.007        https://www.zjujournals.com/sci/CN/Y2024/V51/I2/186

1 SAEZ E, GONZÁLEZ-OLIVARES E. Dynamics of a predator-prey model[J]. SIAM Journal on Applied Mathematics, 1999, 59(5): 18671878. DOI:10. 1137/S0036139997318457
doi: 10. 1137/S0036139997318457
2 SASMAL S K, TAKEUCHI Y. Dynamics of a predator-prey system with fear and group defense[J]. Journal of Mathematical Analysis and Applications, 2020, 481(1): 123471. DOI:10. 1016/j.jmaa.2019.123471
doi: 10. 1016/j.jmaa.2019.123471
3 PENG R, WANG M. Positive steady states of the Holling-Tanner prey-predator model with diffusion[J]. Proceedings of the Royal Society of Edinburgh Section A(Mathematics), 2005, 135(1): 149164. DOI:10. 1017/S0308210500003814
doi: 10. 1017/S0308210500003814
4 DU Y, LOU Y. Some uniqueness and exact multiplicity results for a predator-prey model[J]. Transactions of the American Mathematical Society, 1997, 349(6): 24432475. DOI:10.1090/s0002994797018424
doi: 10.1090/s0002994797018424
5 DU Y, NIU B, GUO Y, et al. Double Hopf bifurcation in delayed reaction-diffusion systems[J]. Journal of Dynamics and Differential Equations, 2020, 32(1): 313358. DOI:10.1007/s1088401897254
doi: 10.1007/s1088401897254
6 KO W, RYU K. Coexistence states of a predator-prey system with non-monotonic functional response[J]. Nonlinear Analysis(Real World Applications), 2007, 8(3): 769786. DOI:10.1016/j.nonrwa.2006.03.003
doi: 10.1016/j.nonrwa.2006.03.003
7 RYU K, AHN I. Positive solutions for ratio-dependent predator-prey interaction systems[J]. Journal of Differential Equations, 2005, 218(1):117135. DOI:10.1016/j.jde.2005.06.020
doi: 10.1016/j.jde.2005.06.020
8 GUO G, WU J. The effect of mutual interference between predators on a predator-prey model with diffusion[J]. Journal of Mathematical Analysis and Applications, 2012, 389(1): 179194. DOI:10. 1016/j.jmaa.2011.11.044
doi: 10. 1016/j.jmaa.2011.11.044
9 HUANG J, RUAN S, SONG J. Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response[J]. Journal of Differential Equations, 2014, 257(6): 17211752. DOI:10.1016/j.jde.2014.04.024
doi: 10.1016/j.jde.2014.04.024
10 HE X, ZHENG S. Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response[J]. Journal of Mathematical Biology, 2017, 75(1): 239257. DOI:10.1007/s0028501610825
doi: 10.1007/s0028501610825
11 CHEN S, LIU Z, SHI J. Nonexistence of nonconstant positive steady states of a diffusive predatorprey model with fear effect[J]. Journal of Nonlinear Modeling and Analysis, 2019(1): 4756. DOI:10.12150/jnma.2019.47
doi: 10.12150/jnma.2019.47
12 CREEL S, CHRISTIANSON D, LILEY S, et al. Predation risk affects reproductive physiology and demography of elk[J]. Science, 2007, 315(5814): 960960. DOI:10.1126/science.1135918
doi: 10.1126/science.1135918
13 ZANETTE L Y, WHITE A F, ALLEN M C, et al. Perceived predation risk reduces the number of offspring songbirds produce per year[J]. Science, 2011, 334(6061): 13981401. DOI:10.1126/science. 1210908
doi: 10.1126/science. 1210908
14 WANG X, ZANETTE L, ZOU X. Modelling the fear effect in predator-prey interactions[J]. Journal of Mathematical Biology, 2016, 73(5): 11791204. DOI:10.1007/s0028501609891
doi: 10.1007/s0028501609891
15 HOLLING C S. The functional response of predators to prey density and its role in mimicry and population regulation[J]. The Memoirs of the Entomological Society of Canada, 1965, 97(S45): 560. DOI:10. 4039/entm9745fv
doi: 10. 4039/entm9745fv
16 KO W, RYU K. Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge[J]. Journal of Differential Equations, 2006, 231(2): 534550. DOI:10.1016/j.jde.2006.08.001
doi: 10.1016/j.jde.2006.08.001
17 LI W T, WU S L. Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response[J]. Chaos, Solitons and Fractals, 2008, 37(2): 476486. DOI:10.1016/j.chaos.2006.09.039
doi: 10.1016/j.chaos.2006.09.039
18 CHEN B, WANG M. Qualitative analysis for a diffusive predator-prey model[J]. Computers and Mathematics with Applications, 2008, 55(3): 339355. DOI:10.1016/j.camwa.2007.03.020
doi: 10.1016/j.camwa.2007.03.020
19 TIAN Y, WENG P. Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes[J]. Acta Applicandae Mathematicae, 2011, 114(3): 173192. DOI:10. 1007/s1044001196079
doi: 10. 1007/s1044001196079
20 DALZIEL B D, THOMANN E, MEDLOCK J, et al. Global analysis of a predator-prey model with variable predator search rate[J]. Journal of Mathematical Biology, 2020, 81(1): 159183. DOI:10.1007/s0028502001504y
doi: 10.1007/s0028502001504y
21 叶其孝,李正元. 反应扩散方程引论[M]. 北京: 科学出版社,1990. doi:10.1093/oso/9780198533788.001.0001
YE Q X, LI Z Y. Introduction to Reaction-Diffusion Equations [M]. Beijing: Science Press, 1990. doi:10.1093/oso/9780198533788.001.0001
doi: 10.1093/oso/9780198533788.001.0001
22 LI L. Coexistence theorems of steady states for predator-prey interacting systems[J]. Transactions of the American Mathematical Society, 1988, 305(1): 143166. DOI:10.1090/s00029947198809201511
doi: 10.1090/s00029947198809201511
23 WANG M, WU Q. Positive solutions of a prey-predator model with predator saturation and competition[J]. Journal of Mathematical Analysis and Applications, 2008, 345(2): 708718. DOI:10. 1016/j.jmaa.2008.04.054
doi: 10. 1016/j.jmaa.2008.04.054
24 郭改慧, 李艳玲. 带B-D反应项的捕食-食饵模型的全局分支及稳定性[J]. 应用数学学报, 2008, 31(2): 220-230. DOI:10.3321/j.issn:02543079. 2008.02.003
GUO G H, LI Y L. Global bifurcation and stability for the predator-prey model with B-D functional response[J]. Acta Mathematicae Applicatae Sinica, 2008, 31(2): 220230. DOI:10.3321/j.issn:02543079.2008.02.003
doi: 10.3321/j.issn:02543079.2008.02.003
25 王明新. 非线性椭圆型方程[M]. 北京: 科学出版社,2010: 155169. doi:10.1016/j.cnsns.2009.05.069
WANG M X. Nonlinear Elliptic Equation[M]. Beijing: Science Press, 2010: 15169. doi:10.1016/j.cnsns.2009.05.069
doi: 10.1016/j.cnsns.2009.05.069
26 BLAT J, BROWN K J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. SIAM Journal on Mathematical Analysis, 1986, 17(6): 13391353. DOI:10.1137/0517094
doi: 10.1137/0517094
[1] 韩婉琴, 石垚, 包雄雄. 具有合作狩猎的食物链模型的Hopf分支[J]. 浙江大学学报(理学版), 2023, 50(5): 539-550.
[2] 石金诚, 肖胜中. 多孔介质中一类Boussinesq方程组的连续依赖性[J]. 浙江大学学报(理学版), 2023, 50(4): 409-415.
[3] 李孝武,杨赟瑞,刘凯凯. 一类时滞非局部扩散SVIR模型单稳行波解的稳定性[J]. 浙江大学学报(理学版), 2023, 50(3): 273-286.
[4] 陈芳, 郭慧君, 宋雨濛, 楼辉. 改性核桃壳炭负载的碳化钼催化剂的制备及其在玉米油加氢脱氧反应中的应用[J]. 浙江大学学报(理学版), 2023, 50(2): 174-184.
[5] 焦玉娟. Cartan-Eilenberg VW-Gorenstein复形研究[J]. 浙江大学学报(理学版), 2022, 49(6): 657-661.
[6] 张钰倩,张太雷,侯雯珊,宋学力. 一类具有媒体效应和追踪隔离的SIQR时滞传染病模型[J]. 浙江大学学报(理学版), 2022, 49(2): 159-169.
[7] 石金诚, 李远飞. 多孔介质中的Darcy方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48(3): 298-303.
[8] 石金诚, 李远飞. 有界区域内相互作用的Forchheimer-Darcy流体方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48(1): 57-63.
[9] 武云霞, 赵丹, 陈莎莎, 张平, 杨岳平. 反渗透淡化水调质稳定性及健康性实验研究[J]. 浙江大学学报(理学版), 2020, 47(1): 101-106.
[10] 张子振, 储煜桂, KUMARISangeeta, RanjitKumar UPADHYAY. 一类具有非线性发生率的无线传感网络蠕虫传播模型的延迟动力学行为[J]. 浙江大学学报(理学版), 2019, 46(2): 172-195.
[11] 岳田, 宋晓秋. 线性斜积半流的一致指数稳定性的若干刻画[J]. 浙江大学学报(理学版), 2018, 45(5): 545-548.
[12] 张子振, 毕殿杰, 赵涛. 一类具有临时免疫的时滞蠕虫传播模型的Hopf分支[J]. 浙江大学学报(理学版), 2016, 43(3): 279-285.
[13] 岳田, 宋晓秋. 巴拿赫空间上斜演化半流的非一致指数不稳定性的存在条件[J]. 浙江大学学报(理学版), 2016, 43(2): 181-183.
[14] 陈爱苹, 楼 辉. Pt/Al2O3在生物油轻质组分水相重整制氢反应中的稳定性[J]. 浙江大学学报(理学版), 2016, 43(1): 23-28.
[15] 张子振. 一类时滞计算机网络病毒模型的动力学行为[J]. 浙江大学学报(理学版), 2015, 42(6): 677-686.