| Optimization Design |
|
|
|
|
| Multi-objective optimization of large-load insulating pull rod end based on improved MOMVO algorithm |
Tian WU1,2( ),Binfan WU1,2( ),Zhonghua QIU3,Yong PENG4,Xiang ZHU4 |
1.College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China 2.Hubei Transmission Line Engineering Technology Research Center, Yichang 443002, China 3.Extra High Voltage Company, State Grid Sichuan Electric Power Company, Chengdu 610041, China 4.China Electric Power Research Institute Limited, Wuhan 430074, China |
|
|
|
Abstract Aiming at the problems of excessive weight and inconvenient use of large-load insulating pull rods for ultra-high voltage, a multi-objective optimization method for the end of insulating pull rods is proposed to reduce weight and enhance insulation performance and mechanical properties. Firstly, a finite element simulation model of the insulating pull rod was established, and the electric field distribution and mechanical characteristics of its end were analyzed. Then, based on the optimal Latin hypercube sampling experimental design method and the radial basis function neural network, the surrogate models for the mass, maximum stress, maximum deformation and maximum electric field intensity of the insulating pull rod end were constructed. On this basis, the MOMVO (multi-objective multi-verse optimization) algorithm was utilized to conduct multi-objective optimization design. During the optimization process, the multi-objective optimization performance of the MOMVO algorithm was improved by combining the Sine-Tent-Cosine chaotic mapping strategy, the sine cosine algorithm, and the adaptive parameter update strategy. Finally, the feasibility of the multi-objective optimization design method was verified through simulation and tests. The results indicated that the optimization performance of the improved MOMVO algorithm was superior to that of the traditional NSGA-II (non-dominated sorting genetic algorithm-II) and MOEA/D (multi-objective evolutionary algorithm based on decomposition). Compared with before optimization, the maximum stress, maximum deformation and maximum electric field intensity of the optimized insulating pull rod end decreased by 17.03%, 6.85% and 5.58%, respectively, while the mass decreased by 10.66%. The research results provide reference for the comprehensive optimization design of insulating tools and equipment.
|
|
Received: 06 March 2025
Published: 31 October 2025
|
|
|
|
Corresponding Authors:
Binfan WU
E-mail: wutian_08@163.com;1044435906@qq.com
|
基于改进MOMVO算法的大荷载绝缘拉棒端头多目标优化
针对特高压大荷载绝缘拉棒笨重、使用不便的问题,提出了一种绝缘拉棒端头多目标优化方法,以减小质量和提升绝缘性能及机械性能。首先,建立绝缘拉棒的有限元仿真模型,分析了其端头的电场分布和机械特性。然后,基于最优拉丁超立方抽样试验设计方法和径向基神经网络,构建了绝缘拉棒端头质量、最大应力、最大形变量和最大电场强度的代理模型。在此基础上,采用MOMVO(multi-objective multi-verse optimization,多目标多元宇宙优化)算法开展了多目标优化设计。在优化过程中,结合Sine-Tent-Cosine混沌映射策略、正余弦算法以及自适应参数更新策略,以提高MOMVO算法的多目标优化性能。最后,通过仿真和试验来检验多目标优化方法的可行性。结果表明:改进MOMVO算法的优化性能优于传统的NSGA-II(non-dominated sorting genetic algorithm-Ⅱ,二代非支配排序遗传算法)和MOEA/D(multi-objective evolutionary algorithm based on decomposition,基于分解的多目标进化算法)等。相较于优化前,优化后绝缘拉棒端头的最大应力、最大形变量和最大电场强度分别下降了17.03%、6.85%和5.58%,质量减小了10.66%。研究结果为绝缘工器具的综合优化设计提供了参考。
关键词:
大荷载绝缘拉棒,
有限元仿真,
代理模型,
多目标优化,
多目标多元宇宙优化算法
|
|
| [[1]] |
胡毅, 刘凯, 刘庭, 等. 超/特高压交直流输电线路带电作业[J]. 高电压技术, 2012, 38(8): 1809-1820. HU Y, LIU K, LIU T, et al. Live working on EHV/UHV transmission lines[J]. High Voltage Engineering, 2012, 38(8): 1809-1820.
|
|
|
| [[2]] |
沈海江, 李文飞, 周行江, 等. 基于人机工程学的配网新型绝缘杆作业能力提升及工器具优化研究[J]. 电力设备管理, 2019(11): 99-100. SHEN H J, LI W F, ZHOU X J, et al. Study of improvement of distribution network's operational capability and instrument based on ergonomics[J]. Electric Power Equipment Management, 2019(11): 99-100.
|
|
|
| [[3]] |
任承贤, 李稳, 邹德华, 等. 特高压带电作业中高强防雨绝缘拉棒设计[J]. 电力科学与技术学报, 2018, 33(1): 154-159. REN C X, LI W, ZOU D H, et al. Design of high strength waterproof insulating pull rod for UHV live working[J]. Journal of Electric Power Science and Technology, 2018, 33(1): 154-159.
|
|
|
| [[4]] |
FANG Y Q, YU G K, WANG B, et al. Study on electric field distribution and metal joints optimization of insulated rods for UHV live working[C]//2018 IEEE International Conference on High Voltage Engineering and Application. Athens, Sep. 10-13, 2018.
|
|
|
| [[5]] |
向文祥, 肖宾, 邬正荣. 特高压带电作业用软质绝缘拉棒的研制[J]. 中国电力, 2014, 47(5): 78-82. XIANG W X, XIAO B, WU Z R. Flexible insulating rod for live line working with ultra-high voltage[J]. Electric Power, 2014, 47(5): 78-82.
|
|
|
| [[6]] |
索寅生. 超高压及特高压输电线路耐张塔型带电作业方法研究[D]. 北京: 华北电力大学, 2018. SUO Y S. Research on live working method of tension tower type for EHV and UHV transmission lines[D]. Beijing: North China Electric Power University, 2018.
|
|
|
| [[7]] |
杜进桥, 张施令, 李乃一, 等. 特高压交流盆式绝缘子电场分布计算及屏蔽罩结构优化[J]. 高电压技术, 2013, 39(12): 3037-3043. DU J Q, ZHANG S L, LI N Y, et al. Electric field distribution calculation and shielding electrode structure optimization of UHVAC basin-type insulator[J]. High Voltage Engineering, 2013, 39(12): 3037-3043.
|
|
|
| [[8]] |
张维凯, 孙强, 葛延鹏, 等. 基于NSGA-Ⅱ算法的GIS隔离开关盆式绝缘子电场分布和机械性能综合优化[J]. 高电压技术, 2025, 51(1): 336-345. ZHANG W K, SUN Q, GE Y P, et al. Integrated optimization of electrical field distribution and mechanical performance of basin-type insulator in GIS disconnector based on NSGA-Ⅱ[J]. High Voltage Engineering, 2025, 51(1): 336-345.
|
|
|
| [[9]] |
刘丰硕, 汲胜昌, 党永亮, 等. 基于C-MOEA/D约束多目标优化算法的中频变压器绝缘结构全局优化设计方法[J]. 高电压技术, 2025, 51(2): 956-966. LIU F S, JI S C, DANG Y L, et al. Global optimal design method for insulation structure of medium frequency transformer based on constrained multiobjective optimization algorithm C-MOEA/D[J]. High Voltage Engineering, 2025, 51(2): 956-966.
|
|
|
| [[10]] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
|
|
|
| [[11]] |
ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
|
|
|
| [[12]] |
MIRJALILI S, MIRJALILI S M, HATAMLOU A. Multi-verse optimizer: a nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27(2): 495-513.
|
|
|
| [[13]] |
MIRJALILI S, JANGIR P, MIRJALILI S Z, et al. Optimization of problems with multiple objectives using the multi-verse optimization algorithm[J]. Knowledge-Based Systems, 2017, 134: 50-71.
|
|
|
| [[14]] |
KUMAR P, GARG S, SINGH A, et al. MVO-based 2-D path planning scheme for providing quality of service in UAV environment[J]. IEEE Internet of Things Journal, 2018, 5(3): 1698-1707.
|
|
|
| [[15]] |
乔井彦, 李金柱, 张羲黄, 等. 环氧树脂玻璃钢的动静态拉伸力学特性[J]. 高压物理学报, 2023, 37(3): 29-38. QIAO J Y, LI J Z, ZHANG X H, et al. Dynamic and static tensile mechanical properties of glass fiber reinforced plastics[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 29-38.
|
|
|
| [[16]] |
胡毅. 带电作业工具及安全工具试验方法[M]. 北京: 中国电力出版社, 2003. HU Y. Test methods for live working tools and safety tools[M]. Beijing: China Electric Power Press, 2003.
|
|
|
| [[17]] |
党园, 姜东飞, 谷倩倩, 等. 基于COMSOL热流固耦合的金属氧化物避雷器密封结构优化[J]. 高电压技术, 2020, 46(3): 852-859. DANG Y, JIANG D F, GU Q Q, et al. Optimization of sealing structure of metal oxide arrester based on COMSOL thermal-fluid-solid coupling[J]. High Voltage Engineering, 2020, 46(3): 852-859.
|
|
|
| [[18]] |
GHASSEMI M, FARZANEH M, CHISHOLM W A. Three-dimensional FEM electrical field calculation for FRP hot stick during EHV live-line work[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(6): 2531-2540.
|
|
|
| [[19]] |
HUA Z Y, ZHOU Y C, HUANG H J. Cosine-transform-based chaotic system for image encryption[J]. Information Sciences, 2019, 480: 403-419.
|
|
|
| [[20]] |
MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
|
|
|
| [[21]] |
RIZK-ALLAH R M, HASSANIEN A E. A comprehensive survey on the sine-cosine optimization algorithm[J]. Artificial Intelligence Review, 2023, 56(6): 4801-4858.
|
|
|
| [[22]] |
杨小猛, 李亮, 胡雄飞, 等. 基于改进正余弦算法的抱杆结构优化[J]. 应用数学和力学, 2024, 45(5): 529-538. YANG X M, LI L, HU X F, et al. Structure optimization of holding poles based on the improved sine cosine algorithm[J]. Applied Mathematics and Mechanics, 2024, 45(5): 529-538.
|
|
|
| [[23]] |
杨景明, 穆晓伟, 车海军, 等. 多策略改进的多目标粒子群优化算法[J]. 控制与决策, 2017, 32(3): 435-442. YANG J M, MU X W, CHE H J, et al. Improved multi-objective particle swarm optimization algorithm based on multiple strategies[J]. Control and Decision, 2017, 32(3): 435-442.
|
|
|
| [[24]] |
谢承旺, 张飞龙, 陆建波, 等. 一种多策略协同的多目标萤火虫算法[J]. 电子学报, 2019, 47(11): 2359-2367. XIE C W, ZHANG F L, LU J B, et al. Multi-objective firefly algorithm based on multiply cooperative strategies[J]. Acta Electronica Sinica, 2019, 47(11): 2359-2367.
|
|
|
| [[25]] |
刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278. doi:10.11897/SP.J.1016.2020.01246 LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278.
doi: 10.11897/SP.J.1016.2020.01246
|
|
|
| [[26]] |
MAHMOUDI H, ZIMMERMANN H. On optimal Latin hypercube design for yield analysis of analog circuits[C]//2015 Austrian Workshop on Microelectronics. Vienna,Sep. 28, 2015.
|
|
|
| [[27]] |
吕小青, 王旭, 徐连勇, 等. 基于径向基函数神经网络和NSGA-Ⅱ的气保焊工艺多目标优化[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(10): 1013-1018. LÜ X Q, WANG X, XU L Y, et al. Multi-objective optimization of gas metal arc welding process parameters based on radial based function neural network and NSGA-Ⅱ[J]. Journal of Tianjin University (Science and Technology), 2020, 53(10): 1013-1018.
|
|
|
| [[28]] |
张聪, 燕翔, 杨平, 等. 大型船舶推进轴系校中-振动性能综合优化研究[J]. 华中科技大学学报(自然科学版), 2025, 53(7): 145-150. ZHANG C, YAN X, YANG P, et al. Research on comprehensive optimization of alignment-vibration performance of large ship propulsion shafting[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2025, 53(7): 145-150.
|
|
|
| [[29]] |
丁璨, 王周琳, 袁召, 等. 基于多目标灰狼优化算法与RBF神经网络的真空灭弧室触头结构优化设计[J]. 高电压技术, 2024, 50(2): 543-550. DING C, WANG Z L, YUAN Z, et al. Structural optimization design of vacuum interrupter contact based on multi-objective grey wolf optimization algorithm and RBF neural network[J]. High Voltage Engineering, 2024, 50(2): 543-550.
|
|
|
| [[30]] |
中国电力企业联合会. 带电作业用绝缘工具试验导则: [S]. 北京: 中国电力出版社, 2021. China Electricity Council. Test guide of the insulating tools for live working: [S]. Beijing: China Electric Power Press, 2021.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|