Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (4): 409-418    DOI: 10.3785/j.issn.1006-754X.2023.00.036
【Subject Column】 Digital Twin·Intelligent Manufacturing     
Construction of surface temperature monitoring system for laser machining parts based on digital twin
Zhangwei XIE1,2(),Xingbo ZHANG1,2,Zhe XU1,2,Yu ZHANG2,Fengyun ZHANG1,2,Xi WANG1,2,Pingping WANG2,Shufeng SUN1,2(),Haitao WANG1,Jixin LIU3,Weili SUN3,Aixia CAO3
1.School of Mechanical & Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
2.Shandong Research Center of Laser Green and High Efficiency Intelligent Manufacturing Engineering Technology, Qingdao 266520, China
3.School of Intelligent Manufacturing, Qingdao Huanghai University, Qingdao 266555, China
Download: HTML     PDF(3464KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Digital twin is a concept that aims to establish a real-time mapping between physical space and virtual space. In order to expand the application of digital twin technology in laser machining, taking the processing of 7075 aluminum alloy by nanosecond laser marking machine as an example, the important role of finite element simulation in laser machining was expounded. However, due to the large computational amount of finite element simulation and the limited computing level of current computers, the simulation calculation time was long, which could not meet the real-time mapping required by digital twin technology. Therefore, a method of replacing finite element simulation with CGAN (conditional generative adversarial network) model was proposed. In this method, the CGAN model was trained by using the working condition images after image processing and the temperature cloud maps obtained by finite element simulation. Then, the trained CGAN model was packaged for building the surface temperature monitoring system for laser machining parts based on the digital twin. After completing the construction of the virtual end of the digital twin temperature monitoring system, the MQTT (message queuing telemetry transport) communication protocol was used to interact with the physical end to realize the remote monitoring and operation of the digital twin system. The surface temperature monitoring system for laser machining parts based on digital twin achieves the rapid simulation calculation of the surface temperature of parts, which solves the problems of long calculation time and inability to achieve real-time mapping by the finite element simulation. It can basically meet the monitoring and prediction of the surface temperature of laser machining parts, and has certain reference value in the field of laser machining temperature monitoring.



Key wordsdigital twin      laser machining      finite element simulation      image processing      conditional generative adversarial network (CGAN)     
Received: 22 September 2022      Published: 04 September 2023
CLC:  TH 136  
Corresponding Authors: Shufeng SUN     E-mail: xiezw0331@163.com;sunshufeng@qut.edu.cn
Cite this article:

Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin. Chin J Eng Design, 2023, 30(4): 409-418.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.036     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I4/409


基于数字孪生的激光加工零件表面温度监控系统的构建

数字孪生是一个旨在物理空间与虚拟空间之间建立实时映射的概念。为拓展数字孪生技术在激光加工领域的应用,以纳秒激光打标机加工7075铝合金为例,阐述了有限元仿真在激光加工领域的重要作用,但由于有限元仿真计算量较大且目前计算机的运算水平有限,存在仿真计算时间较长的问题,无法满足数字孪生技术所需的实时映射。为此,提出了利用CGAN(conditional generative adversarial network,条件生成对抗网络)模型代替有限元仿真的方法。该方法先利用图像化处理后的工况图像和由有限元仿真获得的温度云图对CGAN模型进行训练,随后将训练好的CGAN模型封装,用于构建基于数字孪生的激光加工零件表面温度监控系统。在完成数字孪生温度监控系统虚拟端的搭建后,使用MQTT(message queuing telemetry transport,消息队列遥测传输)通信协议与实体端进行数据交互,实现数字孪生系统的远程监控与操作。基于数字孪生的激光加工零件表面温度监控系统实现了零件表面温度的快速仿真计算,解决了有限元仿真计算时间长、无法实现实时映射的问题,基本能够满足激光加工零件表面温度的监控与预测,在激光加工温度监测领域具有一定的参考价值。


关键词: 数字孪生,  激光加工,  有限元仿真,  图像化处理,  条件生成对抗网络(CGAN) 
Fig.1 Overall framework of surface temperature monitoring system for laser machining parts based on digital twin
Fig.2 Drawing, mapping and rendering of three-dimensional model of nanosecond laser marking machine
Fig.3 Training and use process of deep learning model
Fig.4 Image processing flow of laser machining condition data
工况最高温度/℃绝对误差/℃相对误差/%
实验值仿真值
1641.50632.568.961.39
2693.60682.9110.691.54
3724.30716.357.951.10
4780.20768.3311.871.52
5833.90822.3611.541.38
Table 1 Comparison of the highest temperature on surface of laser machining parts under different working conditions
Fig.5 Image processing flow of transient thermodynamics finite element simulation result data
Fig.6 Dataset for CGAN model training
Fig.7 Quality changes in temperature cloud map generation during CGAN model training
Fig.8 Change curves of MSE and R2 during CGAN model training
Fig.9 Comparison of partial temperature cloud maps generated by CGAN model with target temperature cloud maps
工况有限元仿真CGAN模型
文件大小/GB计算时间/s平均生成时间/sMSE
11.313050.210.009 5
21.333120.180.012 4
31.403150.230.010 3
41.513220.220.009 8
51.553300.190.009 6
Table 2 Comparison of solution performance between finite element simulation and CGAN model
Fig.10 User interface of surface temperature monitoring system for laser machining parts
Fig.11 Nanosecond laser marking machine and real-time temperature monitoring system
Fig.12 Software performance test results of surface temperature monitoring system for laser machining parts
Fig.13 Frame rate test results of surface temperature monitoring system for laser machining parts
[1]   BOEGELEIN T, LOUVIS E, DAWSON K, et al. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel[J]. Materials Characterization, 2016, 112: 30-40.
[2]   ZHANG A, QI B, SHI B, et al. Effect of curvature radius on the residual stress of thin-walled parts in laser direct forming[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1/4): 81-88.
[3]   BARTLETT J L, CROOM B P, BURDICK J, et al. Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation[J]. Additive Manufacturing, 2018, 22: 1-12.
[4]   RIVEIRO A, QUINTERO F, VAL J D, et al. Laser cutting using off-axial supersonic rectangular nozzles[J]. Precision Engineering, 2018, 51: 78-87.
[5]   SALAMA A, LI L, MATIVENGA P, et al. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites[J]. Applied Physics A, 2016, 122(2): 73.
[6]   PRIYANKA J, AMIT S. Simultaneous optimization of kerf taper and heat affected zone in Nd-YAG laser cutting of Al 6061-T6 sheet using hybrid approach of grey relational analysis and fuzzy logic[J]. Precision Engineering, 2018, 54: 302-313.
[7]   KOLLECK R, VOLLMER R, VEIT R. Investigation of a combined micro-forming and punching process for the realization of tight geometrical tolerances of conically formed hole patterns[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1): 331-334.
[8]   ZHU Z, DHOKIA V G, NASSEHI A, et al. A review of hybrid manufacturing processes‒state of the art and future perspectives[J]. International Journal of Computer Integrated Manufacturing, 2013, 26(7): 596-615.
[9]   RAZA N, MEHMOOD I, RAFIUDDIN H, et al. Numerical simulation of added mass determination of standard ellipsoids[C]//Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Jan. 9-12, 2012.
[10]   LEI J, LI D L, ZHOU Y L, et al. Optimization and acceleration of flow simulations for CFD on CPU/GPU architecture[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(7): 290.
[11]   HUANG J, CHEN J, XU W W, et al. A survey on fast simulation of elastic objects[J]. Frontiers of Computer Science, 2019, 13(3): 443-459.
[12]   BRANDVIK T, PULLAN G. Acceleration of a 3D Euler solver using commodity graphics hardware[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 7-10, 2008.
[13]   THIBAULT J C, SENOCAK I. Accelerating incompressible flow computations with a Pthreads-CUDA implementation on small-footprint multi-GPU platforms[J]. Journal of Supercomputing, 2012, 59(2): 693-719.
[14]   MORISITA H, INAKAGATA K, OSANA Y, et al. Implementation and evaluation of an arithmetic pipeline on FLOPS-2D: multi-FPGA system[J]. ACM Sigarch Computer Architecture News, 2011, 38(4): 8-13.
[15]   SANCHEZ-ROMAN D, SUTTER G, LOPEZ-BUEDO S, et al. High-level languages and floating-point arithmetic for FPGA-based CFD simulations[J]. IEEE Design & Test of Computers, 2011, 28(4): 28-37.
[16]   GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems[M]//Transdisciplinary Perspectives on Complex Systems, Cham: Springer, 2017: 85-113.
[17]   TAO F, HE Z, LIU A, et al. Digital twin in industry: state-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415.
[18]   TAO F, SUI F, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(11/12): 3935-3953.
[19]   LUO W, HU T, ZHANG C, et al. Digital twin for CNC machine tool: modeling and using strategy[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 1-12.
[20]   LUO W, HU T, YE Y, et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101974.
[21]   GOHARI H, BERRY C, BARARI A. A digital twin for integrated inspection system in digital manufacturing[J]. IFAC-PapersOnLine, 2019, 52(10): 182-187.
[22]   BOTKINA D, HEDLIND M, OLSSON B, et al. Digital twin of a cutting tool[J]. Procedia CIRP, 2018, 72: 215-218.
[23]   DEBROY T, ZHANG W, TURNER J, et al. Building digital twins of 3D printing machines[J]. Scripta Materialia, 2017, 135: 119-124.
[24]   CAI Y, STARLY B, COHEN P, et al. Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing[J]. Procedia Manufacturing, 2017, 10: 1031-1042.
[25]   SCAGLIONI B, FERRETTI G. Towards digital twins through object-oriented modelling: a machine tool case study[J]. IFAC-PapersOnLine, 2018, 51(2): 613-618.
[26]   LAI X N, WANG S, GUO Z G, et al. Designing a shape‒performance integrated digital twin based on multiple models and dynamic data: a boom crane example[J]. Journal of Mechanical Design, 2021, 143(7): 1-15.
[27]   RASHEED A, SAN O, KVAMSDAL T. Digital twin: values, challenges and enablers from a modeling perspective[J]. IEEE Access, 2020, 8: 21980-22012.
[28]   RUEDEN L V, MAYER S, SIFA R, et al. Combining machine learning and simulation to a hybrid modelling approach: current and future directions[C]//The 18th International Symposium on Intelligent Data Analysis (IDA), Bodenseeforum, Lake Constance, Apr. 27-29, 2020.
[29]   MAGARGLE R, JOHNSON L, MANDLOI P, et al. A simulation-based digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system[C]//Proceedings of the 12th International Modelica Conference. Prague, May 15-17, 2017.
[30]   WANG J, YE L, GAO R X, et al. Digital twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research, 2019, 57(12): 3920-3934.
[31]   SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec. 5-10, 2016.
[32]   曹仰杰,贾丽丽,陈永霞,等.生成式对抗网络及其计算机视觉应用研究综述[J].中国图象图形学报,2018,23(10):1433-1449. doi:10.11834/jig.180103
CAO Y J, JIA L L, CHEN Y X, et al. Review of computer vision based on generative adversarial networks[J]. Journal of Image and Graphics, 2018, 23(10): 1433-1449.
doi: 10.11834/jig.180103
[33]   SONG T A, CHOWDHURY S R, YANG F, et al. PET image super-resolution using generative adversarial networks[J]. Neural Networks, 2020, 125: 83-91.
[34]   MERTENS J, ZAMIR S. The value of two-person zero-sum repeated games with lack of information on both sides[J]. International Journal of Game Theory, 1971, 1(1): 39-64.
[35]   叶晨,关玮.生成式对抗网络的应用综述[J].同济大学学报(自然科学版),2020,48(4):591-601.
YE C, GUAN W. A review of application of generative adversarial networks[J]. Journal of Tongji University (Natural Science), 2020, 48(4): 591-601.
[1] Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material[J]. Chin J Eng Design, 2023, 30(4): 419-428.
[2] Zhe XU,Shufeng SUN,Xingbo ZHANG,Xi WANG,Fengyun ZHANG,Pingping WANG,Zhangwei XIE,Yu ZHANG,Jixin LIU,Weili SUN,Aixia CAO. Interactive control system of optical displacement stage based on digital twin[J]. Chin J Eng Design, 2023, 30(2): 254-261.
[3] Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chin J Eng Design, 2023, 30(1): 39-47.
[4] Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chin J Eng Design, 2023, 30(1): 82-92.
[5] Sheng-hu PAN,Xiao-jun ZHANG,Dong Lü. Design of a control system of plane machining machine tool based on machine vision[J]. Chin J Eng Design, 2022, 29(6): 784-792.
[6] Xu-hui ZHANG,Jia-shan JU,Wen-juan YANG,Xin-yuan Lü. Predictive maintenance system for complex mining equipment based on digital twin[J]. Chin J Eng Design, 2022, 29(5): 643-650.
[7] LI Yang, NIE Yu-fei. Design and analysis of heat insulation sealing door of sodium combustion test plant[J]. Chin J Eng Design, 2022, 29(1): 115-122.
[8] FU Gui-wu, WANG Xing-bo, TIAN Ying. Research on application of digital twin based on intelligent production line of five-axis machining center[J]. Chin J Eng Design, 2021, 28(4): 426-432.
[9] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chin J Eng Design, 2021, 28(3): 367-373.
[10] LIU Yong-jiang, PENG Xuan-lin, TANG Xiong-hui, LI Hua, QI Zi-mei. Resonance failure analysis and optimal design of axial cooling fan[J]. Chin J Eng Design, 2021, 28(2): 203-209.
[11] LI Zong-hao, ZHU Jun, CHEN Wei-qiu. Stress analysis of offshore wind power jacket during on-land construction[J]. Chin J Eng Design, 2021, 28(2): 218-226.
[12] BAI Zhong-hang, SUN Yi-wei, XU Tong, DING Man. Construction of product digital twin model based on design task in conceptual design[J]. Chin J Eng Design, 2020, 27(6): 681-689.
[13] LI Xuan, ZHOU Shuang-wu, LU Song, DING Bing-xiao. Design and analysis of two-DOF micro-positioning platform based on two-level lever mechanism[J]. Chin J Eng Design, 2020, 27(4): 533-540.
[14] WANG An-bang, SUN Wen-bin, DUAN Guo-lin. Research on intelligent method of manufacturing and processing equipment based on digital twin and deep learning technology[J]. Chin J Eng Design, 2019, 26(6): 666-674.
[15] QIAO Jing-hui, LI Ling. Research on TV backboard detection and adaptive capture based on machine vision[J]. Chin J Eng Design, 2019, 26(4): 452-460.