Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (5): 643-650    DOI: 10.3785/j.issn.1006-754X.2022.00.057
Whole Machine and System Design     
Predictive maintenance system for complex mining equipment based on digital twin
Xu-hui ZHANG1,2(),Jia-shan JU1,Wen-juan YANG1,2,Xin-yuan Lü1
1.School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2.Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring, Xi’an 710054, China
Download: HTML     PDF(2486KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the difficulties of status monitoring and predictive maintenance of complex mining equipment under harsh working conditions, a predictive maintenance system based on digital twin was proposed by combining various comprehensive modeling, analysis and prediction techniques, such as status monitoring, fault warning and predictive maintenance. Firstly, the design flow and construction principle of digital twin of complex mining equipment were introduced, and the function of predictive maintenance system was realized in the process of building digital twin. Then, the status data acquisition method based on the LabVIEW, MySQL and Unity3D was studied, and the Unity3D development engine was used to build a three-dimensional visual status monitoring platform for complex mining equipment, and the current equipment status was visualized through virtual space. Finally, the applicability of optimized BP (back propagation) neural network in the fault warning of complex mining equipment was analyzed. At the same time, the predictive maintenance model of key parts of complex mining equipment was established by MATLAB software, and the warning results were transmitted to the Unity3D development engine through MySQL database to drive and deploy the preset maintenance process, so as to achieve the fault warning of key parts under the real-time monitoring of equipment status. According to the actual maintenance process of shearer hydraulic system, a mixed reality (MR) predictive maintenance strategy was formulated, and the effectiveness of the hydraulic plunger pump of shearer rocker arm was verified by taking it as the experimental object. The results showed that the fault prediction accuracy of the proposed predictive maintenance system was higher than 90%, and the fault warning results could drive HoloLens glasses to achieve the maintenance interaction of virtual guidance, which verified the effectiveness of the predictive maintenance function of the system. The research results can provide new ideas for predictive maintenance of complex mining equipment.



Key wordsdigital twin      mining equipment      status monitoring      fault warning      predictive maintenance     
Received: 19 November 2021      Published: 02 November 2022
CLC:  TD 407  
Cite this article:

Xu-hui ZHANG,Jia-shan JU,Wen-juan YANG,Xin-yuan Lü. Predictive maintenance system for complex mining equipment based on digital twin. Chin J Eng Design, 2022, 29(5): 643-650.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.057     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I5/643


基于数字孪生的复杂矿用设备预测性维护系统

针对恶劣工况环境下复杂矿用设备状态监测与预测性维护困难等问题,结合状态监测、故障预警和预测维护等多种综合建模与分析预测技术,提出了一种基于数字孪生的预测性维护系统。首先,介绍了复杂矿用设备数字孪生体的设计流程与构建原理,并在搭建数字孪生体的过程中实现了预测性维护系统的功能;然后,研究了基于LabVIEW、MySQL和Unity3D的状态数据获取方法,利用Unity3D开发引擎搭建了三维可视化复杂矿用设备状态监测平台,并通过虚拟空间可视化展示设备当前状态;最后,分析了优化BP(back propagation,反向传播)神经网络在复杂矿用设备故障预警中的适用性,同时利用MATLAB软件建立了复杂矿用设备关键零部件的预测性维护模型,并将预警结果通过MySQL数据库传输至Unity3D开发引擎,以驱动和部署预设维护流程,实现设备状态实时监测下的关键零部件故障预警。根据采煤机液压系统的实际维修流程,制定了混合现实(mixed reality, MR)预测性维护策略,并以采煤机摇臂部液压柱塞泵为实验对象开展有效性验证。结果表明,所构建的预测性维护系统的故障预测准确率高于90%,且故障预警结果可驱动HoloLens眼镜实现虚拟指导的维修交互,验证了该系统预测性维护功能的有效性。研究结果可为复杂矿用设备的预测性维护提供新思路。


关键词: 数字孪生,  矿用设备,  状态监测,  故障预警,  预测性维护 
Fig.1 Overall process of predictive maintenance system for complex mining equipment based on digital twin
Fig.2 Composition framework of digital twin of complex mining equipment
Fig.3 Status monitoring process of complex mining equipment
Fig.4 Construction process of BP neural network prediction model based on grey rough set
字段名称是否为主键数据类型与大小备注
Equip_idCHAR(20)根据矿企实际的设备情况编号
Equip_typeCHAR(20)如采煤机类型的MG930等
Equip_partTEXT(2)如采煤机摇臂:液压传动部
Equip_stateCHAR(4)检测到故障预测结果的对应编号
Real_timeCHAR(16)设备预测故障的时间戳
Table 1 Field information table of complex mining equipment database
样本a/b/%c/MPad/MPae/(r/min)f/μmλ
126.36746.98203.256316.31
228.56351.22192.926716.10
320.46052.00221.447616.71
421.46527.51225.377217.11
523.67059.35212.765917.50
628.56961.47226.934718.01
729.86262.70215.188018.11
828.26662.88227.704618.71
925.66364.19218.348019.21
1023.26265.32210.784619.20
1122.96667.21213.658719.91
1223.47067.76220.028620.30
1325.77369.35212.455320.70
1429.67370.50217.236521.21
1528.06971.24209.616421.80
1627.96571.99211.747720.40
1728.26373.64221.156922.60
1828.36975.08219.198123.01
1926.36575.53219.897323.11
2023.06676.69220.038224.70
Table 2 Fault data of right rocker hydraulic plunger pump of shearer
样本灰色关联度样本灰色关联度
11.000 0110.859 8
20.987 3120.951 2
30.954 7130.923 0
40.935 4140.882 1
50.963 7150.935 3
60.918 5160.961 7
70.863 8170. 902 3
80.927 0180.953 4
90.936 0190.943 7
100.947 3200.862 0
Table 3 Grey relational analysis results of fault data of right rocker hydraulic piston pump of shearer
样本实际故障状态预测故障状态
预测值对应编号
110.988 31
200.081 40
310.999 01
410.999 21
500.008 70
61
710.986 31
810.910 41
900.031 70
1000.100 50
1100.032 30
1200.002 70
130
1400.019 90
1510.990 51
1610.987 21
1700.024 10
1800.081 60
1910.994 71
2000.074 00
Table 4 Fault prediction results of hydraulic piston pump of left rocker arm of shearer based on BP neural network
Fig.5 Training results of BP neural network prediction model
Fig.6 Functional verification results of predictive maintenance system for hydraulic system of shearer rocker arm
[1]   樊红卫,张旭辉,曹现刚,等.智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J].振动与冲击,2020,39(24):194-204. doi:10.13465/j.cnki.jvs.2020.24.027
FAN Hong-wei, ZHANG Xu-hui, CAO Xian-gang, et al. Research status and prospect of fault diagnosis of China’s coal mine machines under background of intelligent mine[J]. Journal of Vibration and Shock, 2020, 39(24): 194-204.
doi: 10.13465/j.cnki.jvs.2020.24.027
[2]   LI Chen-long, YUAN Chang-shun, CHEN Wen-liang, et al. Integrated fault detection for industrial process monitoring based on multi-dimensional Taylor network[J]. Assembly Automation, 2022, 42(2): 218-235
[3]   鞠晨,张超,樊红卫,等.基于小波包分解和PSO-BPNN的滚动轴承故障诊断[J].工矿自动化,2020,46(8):70-74. doi:10.13272/j.issn.1671-251x.2019120022
JU Chen, ZHANG Chao, FAN Hong-wei, et al. Rolling bearing fault diagnosis based on wavelet packet decomposition and PSO-BPNN[J]. Industry and Mine Automation, 2020, 46(8): 70-74.
doi: 10.13272/j.issn.1671-251x.2019120022
[4]   张旭辉,张雨萌,王妙云,等.基于混合现实的矿用设备维修指导系统[J].工矿自动化,2019,45(6):27-31. doi:10.13272/j.issn.1671-251x.2019010076
ZHANG Xu-hui, ZHANG Yu-meng, WANG Miao-yun, et al. Maintenance guidance system of mine-used equipments based on mixed reality[J]. Industry and Mine Automation, 2019, 45(6): 27-31.
doi: 10.13272/j.issn.1671-251x.2019010076
[5]   陶飞,刘蔚然,张萌,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统,2019,25(1):5-22. doi:10.13196/j.cims.2019.01.001
TAO Fei, LIU Wei-ran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 5-22.
doi: 10.13196/j.cims.2019.01.001
[6]   AIVALIOTIS P, GEORGOULIAS K, ARKOULI Z, et al. Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance[J]. Procedia CIRP, 2019, 81: 417-422.
[7]   陶飞,刘蔚然,刘检华,等.数字孪生及其应用探索[J].计算机集成制造系统,2018,24(1):1-18. doi:10.13196/j.cims.2018.01.001
TAO Fei, LIU Wei-ran, LIU Jian-hua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18.
doi: 10.13196/j.cims.2018.01.001
[8]   刘魁,王潘,刘婷.数字孪生在航空发动机运行维护中的应用[J].航空动力,2019(4):70-74.
LIU Kui, WANG Pan, LIU Ting. The application of digital twin in aero engine operation and maintenance[J]. Aerospace Power, 2019(4): 70-74.
[9]   卢山雨,刘世民,丁志昆,等.基于增强现实的数字孪生加工系统建模与多视图交互[J].计算机集成制造系统,2021,27(2):456-466. doi:10.13196/j.cims.2021.02.013
LU Shan-yu, LIU Shi-min, DING Zhi-kun, et al. Modeling and multi-view interaction of digital twin machining system based on augmented reality[J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 456-466.
doi: 10.13196/j.cims.2021.02.013
[10]   李鸳.基于数字孪生的矿山机械装备复杂零件动态建模[J].机床与液压,2021,49(18):160-165,192. doi:10.3969/j.issn.1001-3881.2021.18.032
LI Yuan. Dynamic modeling for complex parts of mining machinery and equipment based on digital twin[J]. Machine Tool & Hydraulics, 2021, 49(18): 160-165, 192.
doi: 10.3969/j.issn.1001-3881.2021.18.032
[11]   张旭辉,王妙云,张雨萌,等.数据驱动下的工业设备虚拟仿真与远程操控技术研究[J].重型机械,2018(5):20-23. doi:10.3969/j.issn.1001-196X.2018.05.005
ZHANG Xu-hui, WANG Miao-yun, ZHANG Yu-meng, et al. Virtual simulation and remote control technology with data-driven for industrial equipment[J]. Heavy Machinery, 2018(5): 20-23.
doi: 10.3969/j.issn.1001-196X.2018.05.005
[12]   唐竞.数字孪生在航空机电产品装配工艺中的应用研究[J].航空制造技术,2019,62(15):22-30. doi:10.16080/j.issn1671-833x.2019.15.022
TANG Jing. Application of digital twin in assembly process of aviation electromechanical products[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 22-30.
doi: 10.16080/j.issn1671-833x.2019.15.022
[13]   NIKOLAKIS N, ALEXOPOULOS K, XANTHAKIS E, et al. The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(1): 1-12.
[14]   丁华,杨亮亮,杨兆建,等.数字孪生与深度学习融合驱动的采煤机健康状态预测[J].中国机械工程,2020,31(7):815-823. doi:10.3969/j.issn.1004-132X.2020.07.007
DING Hua, YANG Liang-liang, YANG Zhao-jian, et al. Health prediction of shearers driven by digital twin and deep learning[J]. China Mechanical Engineering, 2020, 31(7): 815-823.
doi: 10.3969/j.issn.1004-132X.2020.07.007
[15]   张玉良,张佳朋,王小丹,等.面向航天器在轨装配的数字孪生技术[J].导航与控制,2018,17(3):75-82. doi:10.3969/j.issn.1674-5558.2018.03.012
ZHANG Yu-liang, ZHANG Jia-peng, WANG Xiao-dan, et al. Digital twin technology for spacecraft on-orbit assembly[J]. Navigation and Control, 2018, 17(3): 75-82.
doi: 10.3969/j.issn.1674-5558.2018.03.012
[16]   张旭辉,张超,杨文娟,等.悬臂式掘进机可视化辅助截割系统研制[J].煤炭科学技术,2018,46(12):21-26. doi:10.13199/j.cnki.cst.2018.12.004
ZHANG Xu-hui, ZHANG Chao, YANG Wen-juan, et al. Research and development of visual auxiliary cutting system for cantilever roadheader[J]. Coal Science and Technology, 2018, 46(12): 21-26.
doi: 10.13199/j.cnki.cst.2018.12.004
[17]   郑孟蕾,田凌.基于时序数据库的产品数字孪生模型海量动态数据建模方法[J].清华大学学报(自然科学版),2021,61(11):1281-1288. doi:10.16511/j.cnki.qhdxxb.2021.26.006
ZHENG Meng-lei, TIAN Ling. Digital product twin modeling of massive dynamic data based on a time-series database[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(11): 1281-1288.
doi: 10.16511/j.cnki.qhdxxb.2021.26.006
[18]   迟焕磊,袁智,曹琰,等.基于数字孪生的智能化工作面三维监测技术研究[J].煤炭科学技术,2021,49(10):153-161. doi:10.13199/j.cnki.cst.2021.10.021
CHI Huan-lei, YUAN Zhi, CAO Yan, et al. Study on digital twin-based smart fully-mechanized coal mining workface monitoring technology[J]. Coal Science and Technology, 2021, 49(10): 153-161.
doi: 10.13199/j.cnki.cst.2021.10.021
[19]   GANA M, ACHOUR H, BELAID K, et al. Non-invasive intelligent monitoring system for fault detection in induction motor based on lead-free-piezoelectric sensor using ANN [J]. Measurement Science and Technology, 2022, 33(6): 065105.
[20]   陆宁云,陈闯,姜斌,等.复杂系统维护策略最新研究进展:从视情维护到预测性维护[J].自动化学报,2021,47(1):1-17. doi:10.16383/j.aas.c200227
LU Ning-yun, CHEN Chuang, JIANG Bin, et al. Latest progress on maintenance strategy of complex system: from condition-based maintenance to predictive maintenance[J]. Acta Automatica Sinica, 2021, 47(1): 1-17.
doi: 10.16383/j.aas.c200227
[21]   郭宇,杨育.基于灰色粗糙集与BP神经网络的设备故障预测[J].计算机应用研究,2017,34(9):2642-2645. doi:10.3969/j.issn.1001-3695.2017.09.017
GUO Yu, YANG Yu. Equipment fault prediction based on grey rough set and BP neural network[J]. Application Research of Computers, 2017, 34(9): 2642-2645.
doi: 10.3969/j.issn.1001-3695.2017.09.017
[22]   梁兰.基于数据融合的采煤机液压系统故障诊断研究[D].西安:西安科技大学,2016:21-27.
LIANG Lan. Research on fault diagnosis of shearer hydraulic system based on data fusion[D]. Xi’an: Xi’an University of Science and Technology, 2016: 21-27.
[1] Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin[J]. Chin J Eng Design, 2023, 30(4): 409-418.
[2] Zhe XU,Shufeng SUN,Xingbo ZHANG,Xi WANG,Fengyun ZHANG,Pingping WANG,Zhangwei XIE,Yu ZHANG,Jixin LIU,Weili SUN,Aixia CAO. Interactive control system of optical displacement stage based on digital twin[J]. Chin J Eng Design, 2023, 30(2): 254-261.
[3] FU Gui-wu, WANG Xing-bo, TIAN Ying. Research on application of digital twin based on intelligent production line of five-axis machining center[J]. Chin J Eng Design, 2021, 28(4): 426-432.
[4] BAI Zhong-hang, SUN Yi-wei, XU Tong, DING Man. Construction of product digital twin model based on design task in conceptual design[J]. Chin J Eng Design, 2020, 27(6): 681-689.
[5] WANG An-bang, SUN Wen-bin, DUAN Guo-lin. Research on intelligent method of manufacturing and processing equipment based on digital twin and deep learning technology[J]. Chin J Eng Design, 2019, 26(6): 666-674.