Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (2): 254-261    DOI: 10.3785/j.issn.1006-754X.2023.00.024
Whole Machine and System Design     
Interactive control system of optical displacement stage based on digital twin
Zhe XU1,2(),Shufeng SUN1,2(),Xingbo ZHANG1,2,Xi WANG1,2,Fengyun ZHANG1,2,Pingping WANG1,2,Zhangwei XIE1,2,Yu ZHANG1,2,Jixin LIU3,Weili SUN3,Aixia CAO3
1.School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
2.Shandong Research Center of Laser Green and High Efficiency Intelligent Manufacturing Engineering Technology, Qingdao 266520, China
3.School of Intelligent Manufacturing, Qingdao Huanghai University, Qingdao 266520, China
Download: HTML     PDF(2432KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to solve the problems of inconvenience in experimental operation, difficulty in monitoring equipment operation status and poor interactivity caused by concealed installation position and difficulty in installing auxiliary devices on the self-built laser parallel processing experimental platform, taking a single optical displacement stage in the experimental platform as an example, an interactive control system based on digital twin technology was designed by using Unity engine. This interactive control system used MQTT (message queuing telemetry transport) communication protocol protocol to complete the cross-software information interaction by using the server to transfer data. The Kinesis control software of optical displacement stage and the virtual control panel in Unity engine served as clients in MQTT communication, acting as subscribers and publishers. The digital twin model of the optical displacement stage performed real-time mapping of the motion state of its physical entity based on data information. Users completed synchronous interactive control of the physical entity and the digital twin model through the Kinesis control software or virtual control panel. The secondary development of Kinesis control software was carried out by referencing.dll file, and the motion control class of Kinesis control software was called to complete the motion control of the optical displacement stage. The motion data variables were set to high-precision float type and decimal type to ensure that the data precision was not lost. Ten groups of actual processing data were selected to test the operation latency and synchronization of the interactive control system. The results showed that the data publishing time on the Kinesis control software and the data subscription time on the Unity engine were controlled within 20 ms and 10 ms, respectively. The designed system can better ensure the consistency of synchronous control and real-time action mapping between the digital twin model and the physical entity, which achieves the visual monitoring function of the motion state of the optical displacement stage. In addition, the motion data type can meet the micron level information transmission, ensuring the accuracy requirements of the optical displacement stage. At the same time, the functions of virtual control panel run normally, which improves the convenience of the optical displacement stage control.



Key wordsdigital twin      interactive control      optical displacement stage      motion monitoring     
Received: 27 July 2022      Published: 06 May 2023
CLC:  TH 136  
Corresponding Authors: Shufeng SUN     E-mail: 279091987@qq.com;sunshufeng@qut.ed.cn
Cite this article:

Zhe XU,Shufeng SUN,Xingbo ZHANG,Xi WANG,Fengyun ZHANG,Pingping WANG,Zhangwei XIE,Yu ZHANG,Jixin LIU,Weili SUN,Aixia CAO. Interactive control system of optical displacement stage based on digital twin. Chin J Eng Design, 2023, 30(2): 254-261.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.024     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I2/254


基于数字孪生的光学位移台交互控制系统

为解决自建激光并行加工实验平台因设备安装位置隐蔽、难以加装辅助装置等而造成实验操作不便、设备运行状态监测困难和交互性差的问题,以实验平台中单个光学位移台为例,利用Unity引擎设计了一种基于数字孪生技术的交互控制系统。该交互控制系统采用MQTT(message queuing telemetry transport,消息队列遥测传输)通信协议,利用服务器中转数据的方式完成跨软件间的信息交互。光学位移台的Kinesis控制软件和Unity引擎中的虚拟控制面板作为MQTT通信中的客户端,共同承担订阅者和发布者的角色。光学位移台的数字孪生模型根据数据信息对物理实体的运动状态进行实时映射,用户通过Kinesis控制软件或虚拟控制面板完成对物理实体和数字孪生模型的同步交互控制。采取引用.dll文件对Kinesis控制软件进行二次开发,调用Kinesis控制软件运动控制类的方法完成对光学位移台的运动控制,并将运动数据变量设置为高精度的float型和decimal型,确保数据精度不丢失。选取10组实际加工数据对交互控制系统运行的延时性、同步性进行测试。结果显示,Kinesis控制软件端数据发布耗时和Unity引擎端数据订阅耗时分别控制在20 ms和10 ms内。所设计的系统能够较好地保证数字孪生模型与物理实体间同步控制的一致性、动作映射的实时性,实现了光学位移台运动状态的可视化监测功能。此外,设置的运动数据类型可满足微米级的信息传递,保证了光学位移台使用时的精度要求;同时虚拟控制面板各功能正常运行,提升了光学位移台控制的便利性。


关键词: 数字孪生,  交互控制,  光学位移台,  运动监测 
Fig.1 Overall framework of interactive control system of optical displacement stage based on digital twin
Fig.2 Digital twin model of optical displacement stage
性能指标数值
最小步长/μm1
重复定位精度/μm5
反冲间隙/μm<6
响应时间/ms<50
Table 1 Performance requirements for digital twin control system
Fig.3 Line connection of optical displacement stage in physical environment
Fig.4 Part server connection test procedure for device side
Fig.5 Subscription and publishing methods for Unity engine side
Fig.6 Test data of motion accuracy of optical displacement stage
Fig.7 Visual control panel virtualization interface
Fig.8 Interactive control program flow of optical displacement stage
Fig.9 Functional test site for interactive control system of optical displacement stage
组别数据发布耗时数据订阅耗时
119.177.10
215.179.03
316.008.52
418.326.93
515.866.52
617.546.85
717.098.05
818.317.11
916.788.85
1018.036.18
Table 2 Time consuming for data transmission of interactive control system of optical displacement stage
[1]   邵伟平,刘周林,郝永平,等.精密位移台的控制软件开发[J].机床与液压,2013,41(21):82-85. doi:10.3969/j.issn.1001-3881.2013.21.023
SHAO W P, LIU Z L, HAO Y P, et al. Development of control software for the precision displacement stage[J]. Machine Tool & Hydraulics, 2013, 41(21): 82-85.
doi: 10.3969/j.issn.1001-3881.2013.21.023
[2]   刘俊标,薛虹,顾文琪.微纳加工中的精密工件台技术[M].北京:北京工业大学出版社,2004:1-9.
LIU J B, XUE H, GU W Q. Precision worktable technology in micro nano machining[M]. Beijing: Beijing University of Technology Press, 2004: 1-9.
[3]   陶飞,刘蔚然,张萌,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统,2019,25(1):1-18.
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
[4]   陶飞,马昕,胡天亮,等.数字孪生标准体系[J].计算机集成制造系统,2019,25(10):2405-2418.
TAO F, MA X, HU T L, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405-2418.
[5]   胡伟飞,方健豪,刘飞香,等.基于数字孪生的掘锚一体机实时状态映射[J].湖南大学学报(自然科学版),2022,49(2):1-12.
HU W F, FANG J H, LIU F X, et al. Real-time state mirror-mapping for driving and bolting integration equipment based on digital twin[J]. Journal of Hunan University (Natural Sciences), 2022, 49(2): 1-12.
[6]   WILMA P, ANDREA C. Digital twin of stone sawing processes[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(1): 121-131.
[7]   QI Q L, TAO F, HU T L. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2019, 58: 3-21.
[8]   林润泽,王行健,冯毅萍,等.基于数字孪生的智能装配机械臂实验系统[J].实验室研究与探索,2019,38(12):83-88. doi:10.3969/j.issn.1006-7167.2019.12.020
LIN R Z, WANG X J, FENG Y P, et al. Experimental system of intelligent assembly manipulator based on digital twin[J]. Research and Exploration in Laboratory, 2019, 38(12): 83-88.
doi: 10.3969/j.issn.1006-7167.2019.12.020
[9]   孙惠斌,潘军林,张纪铎,等.面向切削过程的刀具数字孪生模型[J].计算机集成制造系统,2019,25(6):1474-1480.
SUN H B, PAN J L, ZHANG J D, et al. Digital twin model for cutting tools in machining process[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1474-1480.
[10]   李聪波,孙鑫,侯晓博,等.数字孪生驱动的数控铣削刀具磨损在线监测方法[J].中国机械工程,2022,33(1):78-87. doi:10.3969/j.issn.1004-132X.2022.01.009
LI C B, SUN X, HOU X B, et al. Online monitoring method for NC milling tool wear by digital twin-driven[J]. China Mechanical Engineering, 2022, 33(1): 78-87.
doi: 10.3969/j.issn.1004-132X.2022.01.009
[11]   DEBROY T, ZHANG W, TURNER J, et al. Building digital twins of 3D printing machines[J]. Scripta Materialia, 2017, 135: 119-124.
[12]   CHEN W. Intelligent manufacturing production line data monitoring system for industrial internet of things[J]. Computer Communications, 2020, 151: 31-41.
[13]   陈勇,陈燚,裴植,等.基于文献计量的数字孪生研究进展分析[J].中国机械工程,2020,31(7):797-807. doi:10.3969/j.issn.1004-132X.2020.07.005
CHEN Y, CHEN Y, PEI Z, et al. Digital twin: recent development and future trend from bibliometrics perspective[J]. China Mechanical Engineering, 2020, 31(7): 797-807.
doi: 10.3969/j.issn.1004-132X.2020.07.005
[14]   吴雁,王晓军,何勇,等.数字孪生在制造业中的关键技术及应用研究综述[J].现代制造工程,2021(9):137-145.
WU Y, WANG X J, HE Y, et al. Review on the technology and application of digital twin in manufacturing industry[J]. Modern Manufacturing Engineering, 2021(9): 137-145.
[15]   龙玉江,李洵,舒彧,等.数字孪生技术的应用及进展[J].上海电力大学学报,2022,38(4):409-414. doi:10.3969/j.issn.2096-8299.2022.04.016
LONG Y J, LI X, SHU Y, et al. Application and progress of digital twin technology[J]. Journal of Shanghai University of Electric Power, 2022, 38(4): 409-414.
doi: 10.3969/j.issn.2096-8299.2022.04.016
[16]   TAO F, QI Q L, WANG L H, et al. Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: correlation and comparison[J]. Engineering, 2019, 5(4): 653-661.
[17]   曾林森.基于Unity3D的跨平台虚拟驾驶视景仿真研究[D].长沙:中南大学,2013:1-79.
ZENG L S. The coss-platform visual simulation research of virtual driving based on Unity3D[D]. Changsha: Central South University, 2013: 1-79.
[18]   李洋.基于消息队列遥测传输协议的智能家居消息中间件设计[J].计算机应用,2018,38(S1):162-164,217.
LI Y. Design of message oriented middleware in smart home based on message queuing telemetry transport protocol[J]. Journal of Computer Applications, 2018, 38(S1): 162-164, 217.
[19]   孔垂跃,陈羽,赵乾名.基于MQTT协议的配电物联网云边通信映射研究[J].电力系统保护与控制,2021,49(8):168-176. doi:10.19783/j.cnki.pspc.200775
KONG C Y, CHEN Y, ZHAO Q M. Research on cloud-side communication mapping of the distribution internet of things based on MQTT protocol[J]. Power System Protection and Control, 2021, 49(8): 168-176.
doi: 10.19783/j.cnki.pspc.200775
[20]   江献良,陈凌宇,郑杰基,等.基于数字孪生模型的直驱部件高精度控制方法[J].机械工程学报,2021,57(17):98-109. doi:10.3901/jme.2021.17.098
JIANG X L, CHEN L Y, ZHENG J J, et al. High-precision control method of direct drive components based on digital twin model[J]. Journal of Mechanical Engineering, 2021, 57(17): 98-109.
doi: 10.3901/jme.2021.17.098
[21]   蔡启航,王洁,史通,等.导弹装备分布式虚拟协同操作训练系统设计[J].传感器与微系统,2018,37(8):104-106.
CAI Q H, WANG J, SHI T, et al. Design of distributed virtual collaborative operation training system of missile equipment[J]. Transducer and Microsystem Technologies, 2018, 37(8): 104-106.
[1] Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin[J]. Chin J Eng Design, 2023, 30(4): 409-418.
[2] Xu-hui ZHANG,Jia-shan JU,Wen-juan YANG,Xin-yuan Lü. Predictive maintenance system for complex mining equipment based on digital twin[J]. Chin J Eng Design, 2022, 29(5): 643-650.
[3] FU Gui-wu, WANG Xing-bo, TIAN Ying. Research on application of digital twin based on intelligent production line of five-axis machining center[J]. Chin J Eng Design, 2021, 28(4): 426-432.
[4] BAI Zhong-hang, SUN Yi-wei, XU Tong, DING Man. Construction of product digital twin model based on design task in conceptual design[J]. Chin J Eng Design, 2020, 27(6): 681-689.
[5] WANG An-bang, SUN Wen-bin, DUAN Guo-lin. Research on intelligent method of manufacturing and processing equipment based on digital twin and deep learning technology[J]. Chin J Eng Design, 2019, 26(6): 666-674.