Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (1): 82-92    DOI: 10.3785/j.issn.1006-754X.2023.00.011
Modeling, Simulation, Analysis and Decision     
Research on dynamic characteristics of rolling bearing under different component fault conditions
Wen-bing TU(),Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG
School of Mechatronic and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
Download: HTML     PDF(3808KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to explore the difference and similarity of the internal dynamic characteristics of rolling bearings under local fault conditions, taking the NU306 cylindrical roller bearing as the research object, the finite element simulation software ANSYS/LS-DYNA was used to construct the finite element models under normal, outer ring fault, inner ring fault and rolling element fault. Then, the stress, vibration and motion characteristics of rolling element under different fault conditions were obtained. The results showed that when the different components of the rolling bearing failed, the front end stress could lag, and the rear end stress could advance, and the stress change in case of outer ring fault was the largest; when the outer ring failed, the vibration acceleration of the rolling element during passing through the fault area decreased first and then increased, while when the inner ring and rolling element failed, the vibration acceleration increased first and then decreased; the revolution speed of the rolling element was lower than the theoretical revolution speed when the outer ring and the rolling element failed, while the revolution speed was higher than the theoretical revolution speed when the inner ring failed. The constructed finite element model can be used to explore the internal fault mechanism of rolling bearings when different components fail, which can provide a powerful analysis method for further research on the bearing capacity and service life of rolling bearings.



Key wordsrolling bearing      finite element simulation      local fault      dynamic characteristics     
Received: 10 June 2022      Published: 06 March 2023
CLC:  TH 133.3  
Cite this article:

Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions. Chin J Eng Design, 2023, 30(1): 82-92.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.011     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I1/82


不同元件故障状态下滚动轴承的动态特性研究

为探究局部故障状态下滚动轴承内部动态特性的差异性和相似性,以NU306圆柱滚子轴承为研究对象,利用有限元仿真软件ANSYS/LS-DYNA构建正常以及外圈、内圈和滚动体分别故障时的有限元模型,得到不同故障状态下滚动体的应力特性、振动特性及运动特性。结果表明,当滚动轴承的不同元件发生故障时,故障前端应力均会滞后,后端应力均会提前,其中外圈故障时应力的变化最大;外圈故障时滚动体在经过故障区域期间的振动加速度先减小后增大,内圈和滚动体故障时振动加速度先增大后减小;外圈和滚动体故障时滚动体的公转转速均比理论公转转速小,内圈故障时滚动体的公转转速比理论公转转速大。所构建的有限元模型可用于探究不同元件故障时滚动轴承内部的故障机理,可为进一步研究滚动轴承的承载能力和使用寿命提供有力的分析方法。


关键词: 滚动轴承,  有限元仿真,  局部故障,  动态特性 
几何参数数值
轴承宽度b/mm19
轴承内径Di/mm30
轴承外径Do/mm72
轴承节圆直径Dm/mm51.5
轴承径向游隙cd/m0.01
内圈滚道直径di/mm42.5
外圈滚道直径do/mm62.5
滚动体直径Db/mm11
滚动体个数Z12
Table 1 Geometric parameters of NU306 cylindrical roller bearing
Fig.1 Comparison of contact force curves of NU306 cylindrical roller bearing
Fig.2 Two-dimensional finite element model of NU306 cylindrical roller bearing
Fig.3 Displacement of mesh element of finite element model before and after applying damping
Fig.4 NU306 cylindrical roller bearing test bench
Fig.5 Comparison of vibration acceleration of rolling element under inner ring fault
Fig.6 Comparison of vibration acceleration of rolling element under outer ring fault
故障状态仿真频率实验频率
外圈故障166.0164.1
内圈故障256.4255.2
Table 2 Fault characteristic frequency of NU306 cylindrical roller bearing
Fig.7 Schematic diagram of unit number of different fault locations
Fig.8 Equivalent stress at front and rear ends of outer ring fault
故障状态外圈故障前端外圈故障后端
平均等效应力/MPa增长幅度/%平均等效应力/MPa增长幅度/%
正常1 921.51 558.3
外圈故障6 102.2217.66 457.3314.4
内圈故障1 934.70.71 846.518.5
滚动体故障1 827.1-4.92 067.932.7
Table 3 Average equivalent stress at front and rear ends of outer ring fault
Fig.9 Equivalent stress at front and rear ends of inner ring fault
故障状态内圈故障前端内圈故障后端
平均等效应力/MPa增长幅度/%平均等效应力/MPa增长幅度/%
正常2 789.52 864.3
外圈故障2 950.85.82 903.31.4
内圈故障6 085.8118.26 521.1127.7
滚动体故障2 939.25.42 832.11.1
Table 4 Average equivalent stress at front and rear ends of inner ring fault
Fig.10 Equivalent stress at front and rear ends of rolling element fault
故障状态滚动体故障前端滚动体故障后端
平均等效应力/MPa增长幅度/%平均等效应力/MPa增长幅度/%
正常1 699.51 636.6
外圈故障1 696.5-0.21 728.15.6
内圈故障1 801.46.01 728.35.6
滚动体故障4 772.1180.84 961.9203.3
Table 5 Average equivalent stress at front and rear ends of rolling element fault
Fig.11 Vibration acceleration of rolling element under outer ring fault
Fig.12 Vibration acceleration of rolling element under inner ring fault
Fig.13 Vibration acceleration of rolling element under rolling element fault
故障状态

峰峰值

Pk/(m/s2)

峭度值Ku均方根Rms/(m/s2)脉冲指标I
外圈故障2 077.835.7139.229.3
内圈故障1 772.818.312825.2
滚动体故障2 005.533.6146.124.6
Table 6 Time domain index of vibration acceleration of rolling element under different fault conditions
Fig.14 Revolution angular speed of rolling element under different fault conditions
[1]   李辉龙.滚动轴承局部缺陷有限元动力学建模与尺寸演化规律研究[D].兰州:兰州理工大学,2020:1-2.
LI Hui-long. Dynamic modeling and size evolution of rolling bearing with localized defects by finite element method[D]. Lanzhou: Lanzhou University of Technology, 2020: 1-2.
[2]   林腾蛟,荣崎,李润方,等.深沟球轴承运转过程动态特性有限元分析[J].振动与冲击,2009,28(1):118-122. doi:10.3969/j.issn.1000-3835.2009.01.028
LIN Teng-jiao, RONG Qi, LI Run-fang, et al. Finite element analysis of dynamic characteristic in motion process for deep-groove ball bearing [J]. Journal of Vibration and Shock, 2009, 28(1): 118-122.
doi: 10.3969/j.issn.1000-3835.2009.01.028
[3]   姚灿江,魏领会,王海龙.RV减速器滚动轴承动态接触应力的有限元分析[J].北方工业大学学报,2016,28(3):60-65. doi:10.3969/j.issn.1001-5477.2016.03.011
YAO Can-jiang, WEI Ling-hui, WANG Hai-long. Finite element analysis of dynamic contact stress of rolling bearing of RV reducer[J]. Journal of North China University of Technology, 2016, 28(3): 60-65.
doi: 10.3969/j.issn.1001-5477.2016.03.011
[4]   汤武初,陈光东,孙玉超,等.基于ANSYS/LS-DYNA高速列车轴箱轴承动力学分析与故障模拟[J].现代机械,2015(5):5-10.
TANG Wu-chu, CHEN Guang-dong, SUN Yu-chao, et al. Dynamic research and fault simulation on high-speed railway axle box bearings based on ANSYS/LS-DYNA[J]. Modern Machinery, 2015(5): 5-10.
[5]   HE D, YANG Y, XU H. Dynamic analysis of rolling bearings with roller spalling defects based on explicit finite element method and experiment[J]. Journal of Nonlinear Mathematical Physics, 2022, 29: 219-243.
[6]   陈培红.基于显式动力学的滚动轴承故障分析[J].煤炭技术,2017,36(7):318-320.
CHEN Pei-hong. Failure analysis of rolling bearings based on explicit dynamics[J]. Coal Technology, 2017, 36(7): 318-320.
[7]   GAO Q, WU X, LI Z. Failure analysis of rolling bearings based on explicit dynamic method and theories of Hertzian contact[J]. Journal of Failure Analysis and Prevention, 2019, 19(6): 1645-1654.
[8]   江泽鹏,王志伟,段文军,等.回转支承局部故障动力学建模及仿真分析[J].重庆理工大学学报(自然科学),2022,36(8):152-160.
JIANG Ze-peng, WANG Zhi-wei, DUAN Wen-jun, et al. Dynamics modeling and simulation analysis of slewing bearing with local fault[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(8): 152-160.
[9]   李国超,彭炜,李勇才,等.滚动轴承外圈故障的显式有限元动态仿真分析[J].中国机械工程,2012,23(23):2825-2829. doi:10.3969/j.issn.1004-132X.2012.23.011
LI Guo-chao, PENG Wei, LI Yong-cai, et al. Simulation and dynamic analysis of outer ring fault on rolling bearing using explict finite element method[J]. China Mechanical Engineering, 2012, 23(23): 2825-2829.
doi: 10.3969/j.issn.1004-132X.2012.23.011
[10]   SINGH S, KÖPKE U G, HOWARD C Q, et al. Analyses of contact forces and vibration response for a defective rolling element bearing using an explicit dynamics finite element model[J]. Journal of Sound and Vibration, 2014, 333(21): 5356-5377.
[11]   ZHANG Zhi-nan, DING Wei-min, MA Hui-fang. Local stress analysis of a defective rolling bearing using an explicit dynamic method[J]. Advances in Mechanical Engineering, 2016, 8(12): 1-9.
[12]   TANG Hao-hui, LIU Heng, ZHAO Yang, et al. Analysis of mechanics around a localised surface defect of cylindrical roller bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 233(2): 391-403.
[13]   张志伟.基于显式动力学的圆柱滚子轴承的动力学仿真与故障模拟[D].太原:太原理工大学,2013:39-56.
ZHANG Zhi-wei. Dynamic research and fault simulation on cylindrical roller bearing based on explict dynamic[D]. Taiyuan: Taiyuan University of Technology, 2013: 39-56.
[14]   谢向宇,张庆,徐进,等.基于HyperMesh/LS-DYNA的航空发动机轴承内圈损伤仿真分析[J]. 轴承,2019(9):23-27.
XIE Xiang-yu, ZHANG Qing, XU Jin, et al. Simulation analysis on inner ring damage of aeroengine bearings based on HyperMesh/LS-DYNA[J]. Bearing, 2019(9): 23-27.
[15]   马辉,李鸿飞,俞昆,等.含局部故障的滚动轴承动力学建模及振动分析[J].东北大学学报(自然科学版),2020,41(3):343-348.
MA Hui, LI Hong-fei, YU Kun, et al. Dynamic modeling and vibration analysis of rolling bearings with local fault[J]. Journal of Northeastern University (Natural Science), 2020, 41(3): 343-348.
[16]   项云鹏.高速列车轴箱轴承动力学特性研究[D].南昌:华东交通大学,2020:11-22.
XIANG Yun-peng. Research on dynamic charcteristics of high speed train axle box bearings[D]. Nanchang: East China of Jiaotong University, 2020: 11-22.
[17]   LIU J, WU H, SHAO Y. The influence of the raceway thickness on the dynamic performances of a roller bearing[J]. Journal of Strain Analysis for Engineering Design, 2017, 52(8): 528-536.
[18]   涂文兵,罗丫,王朝兵,等.基于显式动力学的深沟球轴承弹性接触动态应力研究[J].机械强度,2016,38(6):1243-1247.
TU Wen-bing, LUO Ya, WANG Chao-bing, et al. Investigation on elastic contact dynamic stress of a deep-groove ball bearing based on explicit dynamics[J]. Journal of Mechanical Strength, 2016, 38(6): 1243-1247.
[19]   杨锦雯.圆柱滚子轴承故障机理与振动特性分析[D].南昌:华东交通大学,2020:8-17.
YANG Jin-wen. Analysis of defect mechanism and vibration characteristics of the cylindrical rolling bearing[D]. Nanchang: East China of Jiaotong University, 2020: 8-17.
[1] Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin[J]. Chin J Eng Design, 2023, 30(4): 409-418.
[2] Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material[J]. Chin J Eng Design, 2023, 30(4): 419-428.
[3] Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chin J Eng Design, 2023, 30(1): 39-47.
[4] Long-long ZHANG,Zheng-ming XIAO,Jiang LIU,Wei-biao LIU. Dynamic characteristics analysis of counter-rotating cylindrical roller bearing[J]. Chin J Eng Design, 2023, 30(1): 93-101.
[5] Ze-jun WEN,Xiang-heng MENG,Zhao XIAO,Fan ZHANG. Sensitivity analysis of airfoil aerodynamic characteristics based on NT-net method and Morris method[J]. Chin J Eng Design, 2022, 29(4): 438-445.
[6] Zhu-xin TIAN,Ming-hui GUO,Hai-yin CAO. Study on influencing factors of dynamic characteristics of annular recess hydrostatic thrust bearing[J]. Chin J Eng Design, 2022, 29(4): 456-464.
[7] LI Yang, NIE Yu-fei. Design and analysis of heat insulation sealing door of sodium combustion test plant[J]. Chin J Eng Design, 2022, 29(1): 115-122.
[8] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chin J Eng Design, 2021, 28(3): 367-373.
[9] LIU Yong-jiang, PENG Xuan-lin, TANG Xiong-hui, LI Hua, QI Zi-mei. Resonance failure analysis and optimal design of axial cooling fan[J]. Chin J Eng Design, 2021, 28(2): 203-209.
[10] LI Zong-hao, ZHU Jun, CHEN Wei-qiu. Stress analysis of offshore wind power jacket during on-land construction[J]. Chin J Eng Design, 2021, 28(2): 218-226.
[11] ZHANG Chao, HAN Xiao-ming, LI Qiang, LI Chi. Design and dynamic characteristics analysis of permanent magnet eddy current shock absorber under impact load[J]. Chin J Eng Design, 2020, 27(6): 786-794.
[12] LI Xuan, ZHOU Shuang-wu, LU Song, DING Bing-xiao. Design and analysis of two-DOF micro-positioning platform based on two-level lever mechanism[J]. Chin J Eng Design, 2020, 27(4): 533-540.
[13] LUO Ru-nan, NIU Wen-tie, WANG Chen-sheng. Analysis of influencing factors of dynamic error of feed system based on electromechanical-rigid-flexible coupling characteristics[J]. Chin J Eng Design, 2019, 26(5): 561-569.
[14] ZHANG Yu, CAI Xin, GAO Qiang, DING Wen-xiang. Research summary of wind turbine tower structure[J]. Chin J Eng Design, 2016, 23(2): 108-115,123.
[15] XIA Lei, JIANG Hao-bin. Design improvement of vehicle bumper anti-collision beam based on stiffness matching[J]. Chin J Eng Design, 2015, 22(1): 84-88.