Theory and Method of Mechanical Design |
|
|
|
|
Research on mechanical properties and model parameters of 3D printed TPU material |
Bowei XIE1,2( ),Mohui JIN1,2,Zhou YANG1,2,3,Jieli DUAN1,2( ),Mingyu QU1,Jinhui LI1 |
1.College of Engineering, South China Agricultural University, Guangzhou 510642, China 2.Lingnan Modern Agricultural Science and Technology Guangdong Laboratory, Guangzhou 510642, China 3.School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China |
|
|
Abstract In order to solve the problem of difficulty in testing and performance verification of compliant mechanisms in the process of optimal design, the mechanical properties of thermoplastic polyurethane (TPU) material were studied by 3D printing technology. The effects of material hardness and print fill rate on the mechanical properties of TPU material were analyzed, and the better 3D printing parameters of TPU material were obtained. Using single factor and two factor tset combined with variance analysis, the primary and secondary factors that significantly affect the flexibility of TPU specimens were identified as TPU material hardness and print fill rate. Combined with the mechanical property test data of TPU material, the mapping relationships between the material parameters and material hardness, print fill rate of four commonly used hyperelastic material constitutive models, i.e. Mooney-Rivlin, Yeoh, Ogden and Valanis-Landel, were obtained. The results showed that with the increase of TPU material hardness and print fill rate, the flexibility of the specimens decreased; among the four hyperelastic models, Ogden model has a good prediction effect on the mechanical properties of TPU specimens under different printing parameters; there was no significant difference in the predictive effect of the four models under the same TPU material hardness and different print fill rates. The research results can provide reference for 3D printing and finite element simulation analysis of TPU material, and provide reliable technical support for the test, performance verification and sample production of compliant mechanisms in the design process.
|
Received: 11 February 2023
Published: 04 September 2023
|
|
Corresponding Authors:
Jieli DUAN
E-mail: xiebowei@stu.scau.edu.cn;duanjieli@scau.edu.cn
|
3D打印TPU材料的力学性能及模型参数研究
为了解决柔顺机构在优化设计过程中试验及性能验证困难的问题,采用3D打印技术对热塑性聚氨酯(thermoplastic polyurethane,TPU)材料的力学性能进行了试验研究。分析了材料硬度和打印填充率对TPU材料力学性能的影响,获得了TPU材料较佳的3D打印参数。进行单因素和两因素试验并结合方差分析,确定了显著影响TPU试样柔性的主次因素分别为TPU材料硬度和打印填充率。结合TPU材料的力学性能试验数据,得到了Mooney-Rivlin、Yeoh、Ogden、Valanis-Landel等4种常用超弹性材料本构模型的材料参数与材料硬度、打印填充率之间的映射关系。研究表明:随着TPU材料硬度和打印填充率增大,试样的柔性减弱;在4种超弹性模型中,Ogden模型对于不同打印参数下的TPU试样都具有较好的力学性能预测效果;4种模型在相同TPU硬度、不同打印填充率下的预测效果没有明显差别。研究结果可以为TPU材料的3D打印和有限元仿真分析提供参考,为柔顺机构在设计过程中的试验、性能验证及样件制作提供可靠的技术支撑。
关键词:
柔顺机构设计,
有限元仿真,
3D打印,
热塑性聚氨酯材料,
非线性分析
|
|
[1] |
邹肖斌,苏丽丽,余华宁,等. 热塑性聚氨酯弹性体反应挤出合成技术研究进展[J].聚氨酯工业,2020,35(4):9-12. doi:10.3969/j.issn.1005-1902.2020.04.003 ZOU X B, SU L L, YU H N, et al. Research progress on reactive extrusion synthesis of thermoplastic polyurethane elastomer[J]. Polyurethane Industry, 2020, 35(4): 9-12.
doi: 10.3969/j.issn.1005-1902.2020.04.003
|
|
|
[2] |
ZHANG Z, XIANG D, WU Y, et al. Effect of carbon black on the strain sensing property of 3D printed conductive polymer composites[J]. Applied Composite Materials, 2022: 29(3): 1235-1248.
|
|
|
[3] |
HU Z, WEI Z, WANG K, et al. Engineering zero modes in transformable mechanical metamaterials[J]. Nature Communications, 2023, 14(1): 1266.
|
|
|
[4] |
YU X, FAN Z, WANG X, et al. A lab-customized autonomous humanoid apple harvesting robot[J]. Computers & Electrical Engineering, 2021, 96: 107459.
|
|
|
[5] |
SHAN X, BIRGLEN L. Modeling and analysis of soft robotic fingers using the fin ray effect[J]. The International Journal of Robotics Research, 2020, 39(14): 1686-1705.
|
|
|
[6] |
XIE B, JIN M, DUAN J, et al. Design and analysis of a flexible adaptive supporting device for banana harvest[J]. Agronomy, 2022, 12(3): 593.
|
|
|
[7] |
范长湘,武龙飞,钱志刚,等.基于TPU塑性材料的柔性操作末端设计[J].材料研究与应用,2022,16(1):124-129. doi:10.3969/j.issn.1673-9981.2022.01.015 FAN Z X, WU L F, QIAN Z G, et al. Design of an flexible end-effector for manipulation on pressure gauge using TPU material[J]. Materials Research and Application,2022, 16(1): 124-129.
doi: 10.3969/j.issn.1673-9981.2022.01.015
|
|
|
[8] |
李三平,孙腾佳,袁龙强,等.气动软体采摘机械手设计及实验研究[J].工程设计学报,2022,29(6):684-694. doi:10.3785/j.issn.1006-754X.2022.00.085 LI S P, SUN T J, YUAN L Q, et al. Design and experimental research of pneumatic soft picking manipulator[J]. Chinese Journal of Engineering Design, 2022, 29(6): 684-694.
doi: 10.3785/j.issn.1006-754X.2022.00.085
|
|
|
[9] |
PENG X, HAN L, LI L. A consistently compressible Mooney-Rivlin model for the vulcanized rubber based on the Penn's experimental data[J]. Polymer Engineering and Science, 2021, 61(9): 2287-2294.
|
|
|
[10] |
KEERTHIWANSA R, JAVOŘÍK J, RUSNÁKOVÁ S, et al. Hyperelastic material characterization: How the change in mooney-rivlin parameter values effect the model curve[J]. Materials Science Forum, 2020, 6102: 265-271.
|
|
|
[11] |
TOMAS I, CISILINO A P, FRONTINI P M. An implicit implementation of the Arruda-Boyce viscoplastic model[J]. Revista Internacional de Metodos Numericos Para Calculo Y Diseno en Ingenieria, 2015, 31(3): 171-181. TOMAS I, CISILINO A P, FRONTINI P M. An implicit implementation of the Arruda-Boyce viscoplastic model[J]. International Journal of Numerical Methods for Calculation and Design in Engineering, 2015, 31(3): 171-181.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|