Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (4): 419-428    DOI: 10.3785/j.issn.1006-754X.2023.00.054
Theory and Method of Mechanical Design     
Research on mechanical properties and model parameters of 3D printed TPU material
Bowei XIE1,2(),Mohui JIN1,2,Zhou YANG1,2,3,Jieli DUAN1,2(),Mingyu QU1,Jinhui LI1
1.College of Engineering, South China Agricultural University, Guangzhou 510642, China
2.Lingnan Modern Agricultural Science and Technology Guangdong Laboratory, Guangzhou 510642, China
3.School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
Download: HTML     PDF(3189KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to solve the problem of difficulty in testing and performance verification of compliant mechanisms in the process of optimal design, the mechanical properties of thermoplastic polyurethane (TPU) material were studied by 3D printing technology. The effects of material hardness and print fill rate on the mechanical properties of TPU material were analyzed, and the better 3D printing parameters of TPU material were obtained. Using single factor and two factor tset combined with variance analysis, the primary and secondary factors that significantly affect the flexibility of TPU specimens were identified as TPU material hardness and print fill rate. Combined with the mechanical property test data of TPU material, the mapping relationships between the material parameters and material hardness, print fill rate of four commonly used hyperelastic material constitutive models, i.e. Mooney-Rivlin, Yeoh, Ogden and Valanis-Landel, were obtained. The results showed that with the increase of TPU material hardness and print fill rate, the flexibility of the specimens decreased; among the four hyperelastic models, Ogden model has a good prediction effect on the mechanical properties of TPU specimens under different printing parameters; there was no significant difference in the predictive effect of the four models under the same TPU material hardness and different print fill rates. The research results can provide reference for 3D printing and finite element simulation analysis of TPU material, and provide reliable technical support for the test, performance verification and sample production of compliant mechanisms in the design process.



Key wordsdesign of compliant mechanism      finite element simulation      3D printing      TPU (thermoplastic polyurethane) material      nonlinear analysis     
Received: 11 February 2023      Published: 04 September 2023
CLC:  TH 122  
Corresponding Authors: Jieli DUAN     E-mail: xiebowei@stu.scau.edu.cn;duanjieli@scau.edu.cn
Cite this article:

Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material. Chin J Eng Design, 2023, 30(4): 419-428.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.054     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I4/419


3D打印TPU材料的力学性能及模型参数研究

为了解决柔顺机构在优化设计过程中试验及性能验证困难的问题,采用3D打印技术对热塑性聚氨酯(thermoplastic polyurethane,TPU)材料的力学性能进行了试验研究。分析了材料硬度和打印填充率对TPU材料力学性能的影响,获得了TPU材料较佳的3D打印参数。进行单因素和两因素试验并结合方差分析,确定了显著影响TPU试样柔性的主次因素分别为TPU材料硬度和打印填充率。结合TPU材料的力学性能试验数据,得到了Mooney-Rivlin、Yeoh、Ogden、Valanis-Landel等4种常用超弹性材料本构模型的材料参数与材料硬度、打印填充率之间的映射关系。研究表明:随着TPU材料硬度和打印填充率增大,试样的柔性减弱;在4种超弹性模型中,Ogden模型对于不同打印参数下的TPU试样都具有较好的力学性能预测效果;4种模型在相同TPU硬度、不同打印填充率下的预测效果没有明显差别。研究结果可以为TPU材料的3D打印和有限元仿真分析提供参考,为柔顺机构在设计过程中的试验、性能验证及样件制作提供可靠的技术支撑。


关键词: 柔顺机构设计,  有限元仿真,  3D打印,  热塑性聚氨酯材料,  非线性分析 
Fig.1 3D printing site of TPU material
参数量值
材料硬度83A,87A,95A
打印填充率60%,80%,100%
喷嘴温度215,218,220 ℃
底板温度60 ℃
打印速度15 mm/s
填充速度12 mm/s
层高0.12 mm
线宽0.4 mm
Table 1 3D printing parameters of TPU material
Fig.2 Mechanical performance test of TPU material
Fig.3 Relationship curves between stress and deformation of TPU specimens
Fig.4 Stress-strain relationship curves of TPU specimens
TPU试样类型1号2号3号4号5号

杨氏

模量

压缩

模量

杨氏

模量

压缩

模量

杨氏

模量

压缩

模量

杨氏

模量

压缩

模量

杨氏

模量

压缩

模量

83A 60%4.713.304.813.774.843.314.863.425.173.79
83A 80%4.974.044.843.635.403.724.793.294.773.27
83A 100%5.984.866.024.705.804.165.974.095.894.07
87A 60%5.274.755.234.855.354.565.224.575.204.76
87A 80%6.845.106.975.616.995.486.785.616.865.86
87A 100%6.926.387.196.538.655.747.615.8410.775.83
95A 60%11.4710.3911.4210.2111.2110.0611.6410.2612.179.76
95A 80%12.1311.1313.5311.6613.1611.6713.7212.0613.4912.25
95A 100%16.7714.1616.6914.3116.9914.5815.9914.4117.6814.78
Table 2 Elastic modulus of TPU specimens
Fig.5 Flexibility of specimens under different TPU material hardness
Fig.6 Flexibility of specimens under different print fill rates
影响因素自由度离差平方和平均离差平方和Fp
TPU材料硬度20.1090.054737.6990.000**
打印填充率20.0140.00797.0970.000**
交互作用40.0030.00111.4100.000**
误差360.0037.357×10-?5
总和451.014
Table 3 Variance analysis results of two factor experiment on the flexibility of TPU material specimens
Fig.7 Variation trend of flexibility of specimens
Fig.8 Fitting curve of TPU material constitutive model
模型材料常数83A60%83A80%83A100%87A60%87A80%87A100%95A60%95A80%95A100%
Mooney-RivlinC1/1054.155.015.705.086.887.1711.8013.2014.30
C2/1061.300.971.401.051.331.451.852.333.93
YeohC10/1060.880.951.060.861.161.382.102.362.99
C20/103-1.72-1.85-1.51-0.94-1.39-3.40-12.80-11.60-9.67
C303.283.492.021.181.986.5871.1461.6726.11
Ogdenμ1/1053.955.595.915.626.386.923.0311.9012.90
μ1/105-1.36-1.10-1.15-2.11-1.25-5.61-12.50-10.10-10.10
μ1/1062.452.602.712.652.733.515.866.968.66
α12.923.183.193.213.253.533.733.563.54
α23.293.583.613.603.643.613.613.493.48
α31.521.261.351.311.391.951.631.571.58
Arruda-Boyceμ/1061.411.421.731.472.082.163.454.094.75
λm/1044.913.835.075.385.895.762.792.745.12
Table 4 Material parameters of TPU material constitutive models
本构模型83A60%83A80%83A100%87A60%87A80%87A100%95A60%95A80%95A100%
Mooney-Rivlin8.2898.99910.929.15012.1213.1419.4122.3027.44
Yeoh10.05011.19512.9010.72214.1314.7318.8622.8431.10
Ogden9.60710.65012.8210.74614.0515.2120.7823.6631.56
Arruda-Boyce9.2749.49311.779.82113.8514.7722.4726.6831.34
Table 5 Maximum stress values of TPU specimens under different constitutive models
Fig.9 Comparison of tensile simulation results and experimental results of TPU specimens under different constitutive models
Fig.10 Schematic diagram of compression deformation of compliant mechanism
Fig.11 Relationship curve between stress and deformation of compliant mechanism
[1]   邹肖斌,苏丽丽,余华宁,等. 热塑性聚氨酯弹性体反应挤出合成技术研究进展[J].聚氨酯工业,2020,35(4):9-12. doi:10.3969/j.issn.1005-1902.2020.04.003
ZOU X B, SU L L, YU H N, et al. Research progress on reactive extrusion synthesis of thermoplastic polyurethane elastomer[J]. Polyurethane Industry, 2020, 35(4): 9-12.
doi: 10.3969/j.issn.1005-1902.2020.04.003
[2]   ZHANG Z, XIANG D, WU Y, et al. Effect of carbon black on the strain sensing property of 3D printed conductive polymer composites[J]. Applied Composite Materials, 2022: 29(3): 1235-1248.
[3]   HU Z, WEI Z, WANG K, et al. Engineering zero modes in transformable mechanical metamaterials[J]. Nature Communications, 2023, 14(1): 1266.
[4]   YU X, FAN Z, WANG X, et al. A lab-customized autonomous humanoid apple harvesting robot[J]. Computers & Electrical Engineering, 2021, 96: 107459.
[5]   SHAN X, BIRGLEN L. Modeling and analysis of soft robotic fingers using the fin ray effect[J]. The International Journal of Robotics Research, 2020, 39(14): 1686-1705.
[6]   XIE B, JIN M, DUAN J, et al. Design and analysis of a flexible adaptive supporting device for banana harvest[J]. Agronomy, 2022, 12(3): 593.
[7]   范长湘,武龙飞,钱志刚,等.基于TPU塑性材料的柔性操作末端设计[J].材料研究与应用,2022,16(1):124-129. doi:10.3969/j.issn.1673-9981.2022.01.015
FAN Z X, WU L F, QIAN Z G, et al. Design of an flexible end-effector for manipulation on pressure gauge using TPU material[J]. Materials Research and Application,2022, 16(1): 124-129.
doi: 10.3969/j.issn.1673-9981.2022.01.015
[8]   李三平,孙腾佳,袁龙强,等.气动软体采摘机械手设计及实验研究[J].工程设计学报,2022,29(6):684-694. doi:10.3785/j.issn.1006-754X.2022.00.085
LI S P, SUN T J, YUAN L Q, et al. Design and experimental research of pneumatic soft picking manipulator[J]. Chinese Journal of Engineering Design, 2022, 29(6): 684-694.
doi: 10.3785/j.issn.1006-754X.2022.00.085
[9]   PENG X, HAN L, LI L. A consistently compressible Mooney-Rivlin model for the vulcanized rubber based on the Penn's experimental data[J]. Polymer Engineering and Science, 2021, 61(9): 2287-2294.
[10]   KEERTHIWANSA R, JAVOŘÍK J, RUSNÁKOVÁ S, et al. Hyperelastic material characterization: How the change in mooney-rivlin parameter values effect the model curve[J]. Materials Science Forum, 2020, 6102: 265-271.
[11]   TOMAS I, CISILINO A P, FRONTINI P M. An implicit implementation of the Arruda-Boyce viscoplastic model[J]. Revista Internacional de Metodos Numericos Para Calculo Y Diseno en Ingenieria, 2015, 31(3): 171-181.
TOMAS I, CISILINO A P, FRONTINI P M. An implicit implementation of the Arruda-Boyce viscoplastic model[J]. International Journal of Numerical Methods for Calculation and Design in Engineering, 2015, 31(3): 171-181.
[1] Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin[J]. Chin J Eng Design, 2023, 30(4): 409-418.
[2] Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chin J Eng Design, 2023, 30(1): 39-47.
[3] Jie YANG,Zhuang-zhuang PENG,Shi-jie WANG,Cong MA,Long WANG,Guo-lin DUAN. Study on fuzzy neural network PID stability control for extrusion force of ceramic slurry 3D printer[J]. Chin J Eng Design, 2023, 30(1): 65-72.
[4] Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chin J Eng Design, 2023, 30(1): 82-92.
[5] Jing ZHOU,Hong-fei GAO,Lin LU,Guo-lin DUAN. Research on extrusion force of micro-flow extrusion 3D printer controlled by variable universe fuzzy PID[J]. Chin J Eng Design, 2022, 29(5): 572-578.
[6] LI Yang, NIE Yu-fei. Design and analysis of heat insulation sealing door of sodium combustion test plant[J]. Chin J Eng Design, 2022, 29(1): 115-122.
[7] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chin J Eng Design, 2021, 28(3): 367-373.
[8] LIU Yong-jiang, PENG Xuan-lin, TANG Xiong-hui, LI Hua, QI Zi-mei. Resonance failure analysis and optimal design of axial cooling fan[J]. Chin J Eng Design, 2021, 28(2): 203-209.
[9] LI Zong-hao, ZHU Jun, CHEN Wei-qiu. Stress analysis of offshore wind power jacket during on-land construction[J]. Chin J Eng Design, 2021, 28(2): 218-226.
[10] LI Xuan, ZHOU Shuang-wu, LU Song, DING Bing-xiao. Design and analysis of two-DOF micro-positioning platform based on two-level lever mechanism[J]. Chin J Eng Design, 2020, 27(4): 533-540.
[11] CAO Wen-yi, CHEN Ji-min, YUAN Yan-ping, LIU Si-da. Development of FDM 3D printer based on hybrid coordinate system[J]. Chin J Eng Design, 2019, 26(1): 110-115.
[12] XIA Lei, JIANG Hao-bin. Design improvement of vehicle bumper anti-collision beam based on stiffness matching[J]. Chin J Eng Design, 2015, 22(1): 84-88.
[13] ZHAO Jin-Fang, XIE Li-Yang, LIU Jian-Zhong, LI Bing. Finite element simulation of fatigue crack growth of MSD with multiple collinear holes on finite plate[J]. Chin J Eng Design, 2009, 16(4): 256-260.
[14] SUN Ai-fang,LIU Min-shan,DONG Qi-wu. Research on strength and FEA of seal plate in compact plate\|shell heat exchanger[J]. Chin J Eng Design, 2008, 15(4): 295-299.
[15] ZHOU Ping-Huai, ZHAO Yang, HUANG Ye-Fei. Performance under force of column-supported steel silos under wind loading[J]. Chin J Eng Design, 2005, 12(4): 243-246.