Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (6): 801-809    DOI: 10.3785/j.issn.1006-754X.2024.04.170
Optimization Design     
Research on structural optimization design for powder separator of large vertical mill based on Kriging model
Hao LI(),Ying WANG,Yaoshuai MA,Chunya SUN,rongjie HUANG,Haoqi WANG,Linli LI
College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Download: HTML     PDF(3687KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Large vertical mill is a grinding system with complex structure, multiple operating parameters, multiple monitoring and operating points, and multiple physical fields, and its performance is directly related to the structure. Based on the parametric design method of NX secondary development, CFD-DPM (computational fluid dynamics-discrete phase model) of LGM large vertical mill was established. The grating structure of the powder separator was analyzed and designed, and the influence of the rotor blade structure on the performance of the mill was discussed. A structure optimization design method for powder separator based on Kriging model was proposed and verified on Isight platform. The results showed that the rotor torque and the velocity of the airflow between rotor blades could be effectively improved by appropriately reducing the waist length and head length of the rotor blades and increasing their thickness and inclination angle within the parameter design range. The torque was increased by 2.91% and the flow rate by 9.76% after optimization, which proved the effectiveness of the proposed method. The research results provide a new theoretical basis and practical guidance for the structural design and optimization of vertical mill, and have high scientific research reference value and industrial application prospect.



Key wordsvertical grinder      powder separator      Kriging surrogate model      optimal design      rotor blade     
Received: 23 September 2024      Published: 31 December 2024
CLC:  TH 162  
Cite this article:

Hao LI,Ying WANG,Yaoshuai MA,Chunya SUN,rongjie HUANG,Haoqi WANG,Linli LI. Research on structural optimization design for powder separator of large vertical mill based on Kriging model. Chinese Journal of Engineering Design, 2024, 31(6): 801-809.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.04.170     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I6/801


基于Kriging模型的大型立式磨机选粉机结构优化设计研究

大型立式磨机是一个结构复杂、运行参数多、监控与操作点多、多物理场的粉磨系统,其性能与结构有直接关系。基于NX二次开发的参数化设计方法,建立了LGM型大型立式磨机的计算流体动力学-离散相模型(computational fluid dynamics-discrete phase model, CFD-DPM),实现对其选粉机格栅结构的分析与设计,探讨转子叶片结构对立磨机工作性能的影响;提出了基于Kriging模型的选粉机结构优化设计方法,并在Isight平台进行优化验证。结果显示,在参数设计范围内适当减小选粉机转子叶片的腰部长度和头部长度,增大其厚度和倾角,可以有效提高转子扭矩和转子叶片间气流速度,优化后扭矩增大了2.91%,流速提高了9.76%,证明了所提出方法的有效性。研究结果为立式磨机的结构设计与优化提供了新的理论依据和实践指导,具有较高的科研参考价值和工业应用前景。


关键词: 立式磨机,  选粉机,  Kriging代理模型,  优化设计,  转子叶片 
结构尺寸参数数值
转笼高度/m2.45
转笼半径/m2.05
转子切向夹角/(°)90
转子数量/个200
进风口面积/m24.68
风环水平入射夹角/(°)65
Table 1 Main structural dimension parameters of LGM type vertical mill
Fig.1 Physical model, fluid domain geometry model and mesh model of vertical mill
Fig.2 Schematic diagram of structure of powder separator
Fig.3 Schematic of gridiron of rotating cage of powder separator
Fig.4 Schematic of structure of rotor blade
设计变量上限下限
L1/mm2545
L2/mm820
L3/mm612
H1/(°)110180
Table 2 Design range of structure parameters of rotor blade
Fig.5 Velocity distribution cloud diagram of airflow inside powder separator
Fig.6 Velocity distribution cloud diagram and local magnification image of airflow between rotor blades under different structures
序号结构参数扭矩/(N·m)流速/(m/s)
1

L1=30 mm,L2=17 mm,

L3=10 mm,H1=124°

858.75019.086
2

L1=42 mm,L2=18 mm,

L3=8 mm,H1=134°

854.21419.015
3

L1=38 mm,L2=16 mm,

L3=11 mm,H1=168°

881.23521.744
4

L1=33 mm,L2=14 mm,

L3=6 mm,H1=149°

781.14719.985
5

L1=23 mm,L2=15 mm,

L3=9 mm,H1=169°

881.23621.483
6

L1=35 mm,L2=12 mm,

L3=6 mm,H1=129°

813.60018.729
7

L1=29 mm,L2=8 mm,

L3=7 mm,H1=154°

780.28620.744
8

L1=40 mm,L2=14 mm,

L3=9 mm,H1=140°

803.63920.293
9

L1=37 mm,L2=19 mm,

L3=11 mm,H1=160°

839.74121.935
Table 3 Rotor torque and velocity of airflow between rotor blades under different structures
Fig.7 Flow block diagram of NSGA-II
Fig.8 Flow block diagram of optimization design of structural parameters of powder separator
Fig.9 Velocity distribution cloud diagram of airflow between rotor blades before and after optimization
比较项优化前优化后变化量/%
L1/mm4038-5.00
L2/mm1816-11.11
L3/mm101110.00
H1/(°)13516824.44
T/(N·m)856.314881.2362.91
v/(m/s)19.06320.9249.76
Table 4 Comparison of rotor structure parameters, rotor torque and velocity of airflow between rotor blades before and after optimization
Fig.10 Sensitivity analysis results of structure parameters of rotor blade
[1]   肖人彬. 大规模个性化定制: 大规模个性化的新发展[J]. 计算机集成制造系统, 2023, 29(12): 4215-4226.
XIAO R B. Massive personalized customization: New development of mass personalization[J]. Computer Integrated Manufacturing Systems, 2023, 29(12): 4215-4226.
[2]   HAN S G, LI A S, WANG H C, et al. A health management system for large vertical mill[J]. International Journal of Distributed Sensor Networks, 2020, 16(3): 15501477209.
[3]   WANG Y P, LIU Y, ZOU J, et al. A novel two-phase evolutionary algorithm for solving constrained multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2022, 75: 101166.
[4]   CHEN L M, QIU H B, GAO L, et al. Optimization of expensive black-box problems via Gradient-enhanced Kriging[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 362: 112861.
[5]   陈博.基于代理模型的输电塔结构易损性分析[D]. 武汉: 华中科技大学, 2021: 15-17.
CHEN B. Vulnerability analysis of transmission tower structure based on Kriging surrogate model[D]. Wuhan: Huazhong University of Science and Technology, 2021: 15-17.
[6]   蔡锦云, 刘忠, 王罡, 等. 基于响应面法的绞磨机辅助拉尾绳装置优化设计[J]. 工程设计学报, 2024, 31(2): 178-187.
CAI J Y, LIU Z, WANG G, et al. Optimization design of auxiliary tail rope pulling device for winch mill based on response surface methodology[J]. Chinese Journal of Engineering Design, 2024, 31(2): 178-187.
[7]   ZHANG W, GAO Z H, WANG C, et al. Kriging-based space exploration global optimization method in aerodynamic design[J]. International Journal of Aerospace Engineering, 2023, 2023(1): 4493349.
[8]   王正平, 龙腾, 刘莉. 多学科设计优化中的多项式响应面近似方法研究[C/OL]//第八届全国信息获取与处理学术会议论文集. [2024-09-13]. .
WANG Z P, LONG T, LIU L. Research on polynomial response surface approximation method in multidisciplinary design optimization[C/OL]//Proceedings of the 8th National Conference on Information Acquisition and Processing. [2024-09-13]. .
[9]   王莉华, 恽歌. 基于无网格径向基函数法的刚柔流耦合动力学分析[C/OL]//中国计算力学大会2014暨第三届钱令希计算力学奖颁奖大会论文集. [2024-09-13]. .
WANG L H, YUN G. Dynamics analysis of rigid flexible flow coupling based on meshless radial basis function method[C/OL]//Proceedings of the 2014 China Computational Mechanics Conference and the 3rd QIAN Lingxi Computational Mechanics Award Ceremony. [2024-09-13]. .
[10]   丁春风, 汪建均. 基于Kriging模型的稳健参数设计[J]. 系统工程与电子技术, 2023, 45(7): 2269-2279.
DING C F, WANG J J. Robust parameter design based on Kriging model[J]. Systems Engineering and Electronics, 2023, 45(7): 2269-2279.
[11]   杨扬,舒乐时. 基于序贯层次Kriging模型的微型飞行器机身结构设计优化[J]. 工程设计学报, 2018, 25(4): 434-440.
YANG Y, SHU L S. Optimization of micro aircraft body structure design based on sequential hierarchical Kriging model[J]. Chinese Journal of Engineering Design, 2018, 25(4): 434-440.
[12]   WANG J S, XU G J, LI Y L, et al. AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis[J]. Reliability Engineering and System Safety, 2022, 219: 108214.
[13]   程嘉辉.大型立式磨机多物理场耦合仿真与运行参数优化[D]. 郑州: 郑州轻工业大学, 2022: 13-18.
CHENG J H. Multi-physics coupling simulation and process parameter optimization of large vertical mills[D]. Zhengzhou: Zhengzhou University of Light Industry, 2022:13-18.
[14]   PECHENIN A V, RUSANOV V N, BOLOTOV A M. Model and software module for predicting uncertainties of coordinate measurements using the NX OPEN API[J]. Journal of Physics: Conference Series, 2018, 1096(1): 012162.
[15]   BENAOUNLI A, KACHEL S. Multidisciplinary design optimization of aircraft wing using commercial software integration[J]. Aerospace Science and Technology, 2019, 92: 766-776.
[16]   BAO Y D, CHAN J P, SU L J, et al. Rigidblock characteristics on subaerial landslide-tsunamis using a 3D coupled Eulerian-Lagrangian model[J]. Journal of Mountain Science, 2023, 20(2): 466-483.
[17]   HUANG R J, MA Y S, LI H, et al. Operation parameters multi-objective optimization method of large vertical mill based on CFD-DPM[J]. Advanced Powder Technology, 2023, 34(6): 104014.
[18]   马耀帅. 基于代理模型的大型立磨工艺参数与选粉机格栅结构优化研究[D]. 郑州: 郑州轻工业大学, 2023: 5-6.
MA Y S. Research on optimization of process parameters of large vertical mill and grid structure of classifier based on proxy model[D]. Zhengzhou: Zhengzhou University of Light Industry, 2023: 5-6.
[19]   MATHERON G. Principles of geostatistics[J].Economic Geology, 1963, 58: 1246-1266.
[20]   DEB K, AGRAWAL S, PRATAP A, et al. Afast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[21]   陈小庆, 侯中喜, 郭良民, 等. 基于NSGA-II的改进多目标遗传算法[J]. 计算机应用, 2006, 26(10): 2453-2456.
CHEN X Q, HOU Z X, GUO L M, et al. Improved multi-objective genetic algorithm based on NSGA-II[J]. Journal of Computer Applications, 2006, 26(10): 2453-2456.
[22]   赖宇阳, 方立桥, 李明, 等. Isight参数优化理论与实例详解[M]. 北京: 北京航空航天大学出版社, 2012.
LAI Y Y, FANG L Q, LI M. Isight parameter optimization theory and example explanation[M]. Beijing: Beihang University Press, 2012.
[23]   李浩, 程嘉辉, 孙春亚, 等. 基于CFD-DPM的大规模颗粒-流体系统数值仿真与分析[J]. 机械工程学报, 2022, 58(22): 450-461. doi:10.3901/jme.2022.22.450
LI H, CHENG J H, SUN C Y, et al. Numerical simulation and analysis of large-scale particle fluid system based on CFD-DPM method[J]. Journal of Mechanical Engineering, 2022, 58(22): 450-461.
doi: 10.3901/jme.2022.22.450
[1] Qisong QI,Chenggang LI,Qing DONG,Yuhao CHEN,Hang XU. Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life[J]. Chinese Journal of Engineering Design, 2023, 30(3): 380-389.
[2] ZHANG Jin, LIU Pei-shan, YIN Yu-feng. Design and dynamic characteristics analysis of Y-shaped rotary ultrasonic motor[J]. Chinese Journal of Engineering Design, 2021, 28(2): 248-254.
[3] SUN Yue-hai, TANG Er-xing. Optimal design of basic parameters of spiral bevel gears[J]. Chinese Journal of Engineering Design, 2020, 27(5): 616-624.
[4] WANG Ai-lun, LIU Le, LIU Qing-ya. Research on strength reliability of pull rod combined rotor based on Kriging surrogate model[J]. Chinese Journal of Engineering Design, 2019, 26(4): 433-440.
[5] ZHANG Xiao-liang, LIN Wei-feng. Research and application of finite element method in the design of wave spring[J]. Chinese Journal of Engineering Design, 2015, 22(5): 399-404.
[6] ZHANG Xiao-liang, LIN Wei-feng. Research and application of finite element method in the design of wave spring[J]. Chinese Journal of Engineering Design, 2015, 22(4): 399-404.
[7] MA Tian-Zheng, QIN Dai-Cheng, ZHANG Yi-Min. Reliability-based optimization of harmonic gears using genetic algorithm[J]. Chinese Journal of Engineering Design, 2011, 18(4): 246-250.
[8] CHENG Xian-Fu. Research on robust optimization design based on axiomatic design and compromise decision support problem[J]. Chinese Journal of Engineering Design, 2008, 15(6): 393-397.
[9] ZHANG Yi-Min, HUANG Xian-Zhen, HE Xiang-Dong, ZHANG Xu-Fang. Optimization design for kinematics accuracy reliability of planar linkage machine with arbitrary distribution parameters[J]. Chinese Journal of Engineering Design, 2007, 14(4): 274-277.
[10] SU Hua-Li, QIN Bao-Jun. Optimal design of heat sinks based on genetic algorithms[J]. Chinese Journal of Engineering Design, 2007, 14(1): 31-34.
[11] XIA Sui-Qin, Lü Wen-Lin, LIU Zhi-Wei. Dynamic Stress on Rotor Blades from Row Interactions in an Axial Flow Compressor[J]. Chinese Journal of Engineering Design, 2001, 8(3): 152-156.
[12] XIE Jing-Qing. Design Method of Mechnical Product's Tolerances at Least Manufacture Cost[J]. Chinese Journal of Engineering Design, 2000, 7(4): 51-54.