Optimization Design |
|
|
|
|
Optimization design of metal structure of bridge crane based on structural function derivative coefficients |
Qing DONG( ),Tianxiang ZHANG,Qisong QI,Gening XU |
School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China |
|
|
Abstract Crane is one of the eight special equipment, the rationality of its structural design is crucial for the safe operation, quality improvement, and efficiency enhancement of the equipment. Therefore, an optimization design method of metal structure of bridge crane based on structural function derivative coefficients was proposed. Firstly, the interpretive structure model was used to accurately describe the interactions and influence relationships between different parts of the crane, the structure complexity of the crane was analyzed to identify and optimize the parameters that had a significant impact on the strength of metal structure of the crane. Secondly, based on the finite element simulation, the structural function derivative coefficients were combined with fitting functions to find the optimal combination of design parameters. Finally, a 300/100 t-30 m bridge crane was taken as an engineering example, and the mass of the whole crane was reduced by 2 035.113 kg through simulation, and the effectiveness of the proposed method was verified. The optimization design method of metal structure of crane based on structural function derivative coefficients solves the problem that the complex interactions between various parts of crane is ignored in the traditional optimization method, and can realize the lightweight design of metal structure on the basis of ensuring the safety of crane service.
|
Received: 19 February 2024
Published: 31 December 2024
|
|
基于结构功能衍生系数的桥式起重机金属结构优化设计
起重机是八大特种设备之一,其结构设计的合理性对于设备安全运行、提质增效至关重要。为此,提出了一种基于结构功能衍生系数的桥式起重机金属结构优化设计方法。首先,利用解释结构模型准确描述了起重机不同零部件之间的相互作用和影响关系,分析了起重机结构的复杂性,识别出对起重机金属结构强度影响较大的参数并对其进行优化设计;其次,在有限元仿真的基础上,将结构功能衍生系数与拟合函数相结合,寻找出最佳的设计参数组合;最后,以300/100 t-30 m通用桥式起重机为工程实例,通过仿真使整机的质量减小了2 035.113 kg,验证了所提方法的有效性。基于结构功能衍生系数的起重机金属结构优化设计方法,解决了传统的优化方法中忽略了起重机各零部件之间复杂的相互作用的问题,可在确保起重机服役安全性的基础上实现其金属结构的轻量化设计。
关键词:
解释结构模型,
结构功能衍生系数,
优化设计,
桥式起重机,
金属结构
|
|
[1] |
邢伟, 李建阳, 谭永营, 等. 某发射塔起重机悬臂梁结构拓扑优化设计[J]. 机床与液压, 2022, 50(21): 120-124. doi:10.3969/j.issn.1001-3881.2022.21.022 XING W, LI J Y, TAN Y Y, et al. Topological optimization design of cantilever beam structure for a transmitter tower crane[J]. Machine Tool & Hydraulics, 2022, 50(21): 120-124.
doi: 10.3969/j.issn.1001-3881.2022.21.022
|
|
|
[2] |
林伟, 朱豪洋. 基于改进鼠群优化算法的起重机主梁轻量化设计[J]. 机械设计, 2024, 41(4): 131-139. LIN W, ZHU H Y. Lightweight design of crane’s main girder based on improved rat swarm optimization algorithm[J]. Journal of Machine Design, 2024, 41(4): 131-139.
|
|
|
[3] |
李军, 周伟, 魏睿. 基于混合GSA-GA的起重机主梁优化设计[J]. 机械设计与制造, 2021(10): 194-197. doi:10.3969/j.issn.1001-3997.2021.10.043 LI J, ZHOU W, WEI R. Optimization design of crane main beam based on hybrid GSA-GA[J]. Machinery Design & Manufacture, 2021(10): 194-197.
doi: 10.3969/j.issn.1001-3997.2021.10.043
|
|
|
[4] |
康振扩, 戚其松, 徐格宁, 等. 基于篮球联赛优化算法的通用桥式起重机主梁轻量化设计[J]. 机械设计与研究, 2022, 38(3): 222-225. KANG Z K, QI Q S, XU G N, et al. Lightweight design of main girder of an universal bridge crane based on basketball league optimization algorithm[J]. Machine Design & Research, 2022, 38(3): 222-225.
|
|
|
[5] |
翁飞翔, 郑成, 王庆霞. 考虑可靠度的桥式起重机主梁金属结构稳健优化设计[J]. 东华大学学报(自然科学版), 2021, 47(5): 74-79, 88. WENG F X, ZHENG C, WANG Q X. Robust optimization design of metal girder structure of bridge crane considering reliability[J]. Journal of Donghua University (Natural Science), 2021, 47(5): 74-79, 88.
|
|
|
[6] |
梁其传, 易朋兴, 邱悦. 基于稀疏网格模型与MOGA算法的起重机主梁结构优化[J]. 现代制造工程, 2019(6): 79-83. LIANG Q C, YI P X, QIU Y. Optimization of the main beam of bridge crane based on sparse grid model and MOGA algorithm[J]. Modern Manufacturing Engineering, 2019(6): 79-83.
|
|
|
[7] |
刘跃昆, 朱强. 基于灵敏度分析的门式起重机结构优化设计[J]. 现代制造工程, 2018(7): 129-133. LIU Y K, ZHU Q. Optimization design of gantry crane structure based on sensitivity analysis[J]. Modern Manufacturing Engineering, 2018(7): 129-133.
|
|
|
[8] |
甘盛霖, 梅益, 鄢天灿, 等. 平头塔式起重机回转总成有限元分析及结构优化[J]. 现代制造工程, 2020(3): 147-151, 156. doi:10.1201/9781003078548-27 GAN S L, MEI Y, YAN T C, et al. Finite element analysis and structure optimum of flat-top tower cranes[J]. Modern Manufacturing Engineering, 2020(3): 147-151, 156.
doi: 10.1201/9781003078548-27
|
|
|
[9] |
陈国雄, 曹阳, 吴家雄, 等. 焊接平台龙门架结构轻量化设计[J]. 机械设计与制造, 2024(4): 194-199. CHEN G X, CAO Y, WU J X, et al. Welding platform gantry structure lightweight design[J]. Machinery Design & Manufacture, 2024(4): 194-199.
|
|
|
[10] |
张磊, 于世杰, 徐进友, 等. 面向轻量化目标的起重机伸臂结构设计及截面尺寸优化[J]. 机械设计, 2023, 40(6): 124-133. ZHANG L, YU S J, XU J Y, et al. Crane jib structure design and section dimension optimization for lightweight target[J]. Journal of Machine Design, 2023, 40(6): 124-133.
|
|
|
[11] |
黄镇, 温梦珂, 李维东. 起重机主梁截面风力系数预测及结构优化设计[J]. 哈尔滨工业大学学报, 2023, 55(12): 123-133. HUANG Z, WEN M K, LI W D. Wind coefficient prediction and structural optimization design of crane girder section[J]. Journal of Harbin Institute of Technology, 2023, 55(12): 123-133.
|
|
|
[12] |
LI J P, BAI L, GAO W, et al. Reliability-based design optimization for the lattice boom of crawler crane[J]. Structures, 2021, 29: 1111-1118.
|
|
|
[13] |
SAVKOVIĆ M M, BULATOVIĆ R R, GAŠIĆ M M, et al. Optimization of the box section of the main girder of the single-girder bridge crane by applying biologically inspired algorithms[J]. Engineering Structures, 2017, 148: 452-465.
|
|
|
[14] |
XU X, XU G X, CHEN J W, et al. Multi-objective design optimization using hybrid search algorithms with interval uncertainty for thin-walled structures[J]. Thin-Walled Structures, 2022, 175: 109218.
|
|
|
[15] |
WANG X J, ZHU J Z, NI B W. Structural reliability-based design optimization with non-probabilistic credibility level[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 418: 116489.
|
|
|
[16] |
CARVALHO J P G, VARGAS D E C, JACOB B P, et al. Multi-objective structural optimization for the automatic member grouping of truss structures using evolutionary algorithms[J]. Computers & Structures, 2024, 292: 107230.
|
|
|
[17] |
TRAN Q D, SHIN D, JANG G W. Bayesian optimization-based topology optimization using moving morphable bars for flexible structure design problems[J]. Engineering Structures, 2024, 300: 117103.
|
|
|
[18] |
李晶, 李颖, 彭晓易. 基于矩阵自乘的一种解释结构模型改进方法[J]. 系统科学与数学, 2021, 41(7): 2046-2062. LI J, LI Y, PENG X Y. An improved method of interpreting structural model based on matrix self-multiplication[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(7): 2046-2062.
|
|
|
[19] |
刘伟强, 徐立云. 基于解释结构模型和复杂网络的制造系统关键脆性因子辨识[J]. 计算机集成制造系统, 2021, 27(11): 3076-3092. LIU W Q, XU L Y. Identification of key brittleness factor for manufacturing system based on ISM and complex network[J]. Computer Integrated Manufacturing Systems, 2021, 27(11): 3076-3092.
|
|
|
[20] |
汪伟. 基于零件结构耦合理论的主动再制造设计[D]. 合肥: 合肥工业大学, 2017. WANG W. Active remanufacturing design based on coupling theory of parts structure[D]. Hefei: Hefei University of Technology, 2017.
|
|
|
[21] |
宋守许, 汪伟, 柯庆镝. 基于结构功能衍生系数的主动再制造设计[J]. 机械工程学报, 2017, 53(11): 175-183. doi:10.3901/jme.2017.11.175 SONG S X, WANG W, KE Q D. Optimization design of predecisional remanufacturing based on structural function derivative coefficient[J]. Journal of Mechanical Engineering, 2017, 53(11): 175-183.
doi: 10.3901/jme.2017.11.175
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|