Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (6): 675-682    DOI: 10.3785/j.issn.1006-754X.2018.06.008
    
Optimization design of grip jaw for large cross section carbon fiber conductor
WAN Jian-cheng, JIANG Ming, YANG Lei, LIU Chen
China Electric Power Research Institute, Beijing 100055
Download: HTML     PDF(11645KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

As the key parameter, the length of the jaw of the parallel mobile grip determines the size and quality of the grip, and it also determines whether the conductor is damaged. In view of the fact that the length of the jaw was mostly determined by the condutor diameter magnification ratio and the test, and it lacked some theoretical support, the structural characteristics of 1 660 mm2 large cross section carbon fiber conductor were analyzed, and the radial compressive strength criterion of carbon fiber was obtained through tests. Referring to the stress simulation results of the 1 250 mm2 conductor, the plastic deformation range of the aluminum shaped wires was obtained. The simulation study of 1600 mm2 large cross section carbon fiber conductor was carried out when the length of the jaw was 350, 325 and 275 mm. Based on the simulation results, a grip for JLZ2X1/F2A-1660/95-492 type 1660 mm2 large cross section carbon fiber conductor was designed and optimized. After optimized design, the length of the jaw was reduced by 21.9%, and the weight of grip was reduced by 25.0%. The research results can provide reference for the design and analysis of the grip.



Key wordscarbon fiber conductor      grip      length of jaw      optimization design     
Received: 18 December 2017      Published: 28 December 2018
CLC:  TM751  
Cite this article:

WAN Jian-cheng, JIANG Ming, YANG Lei, LIU Chen. Optimization design of grip jaw for large cross section carbon fiber conductor. Chinese Journal of Engineering Design, 2018, 25(6): 675-682.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.06.008     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I6/675


大截面碳纤维导线卡线器夹嘴优化设计

卡线器夹嘴长度决定着平行移动式导线卡线器的整体尺寸和质量,也决定着被夹持导线是否会发生损伤。针对夹嘴长度多以导线直径乘放大倍率、试验验证的方法确定,缺乏一定理论支撑,通过对1 660 mm2大截面碳纤维导线的结构特点进行分析,并利用试验得出碳纤维导线芯棒径向耐压强度判据。参考1 250 mm2导线应力仿真结果得出型线铝股塑性范围判据,取夹嘴长度为350,325,275 mm,对1 660 mm2大截面碳纤维导线进行仿真研究,并根据仿真结果优化设计了适用于JLZ2X1/F2A-1660/95-492型1 660 mm2大截面碳纤维导线卡线器。优化后的导线卡线器的夹嘴长度减小了21.9%,质量减小了25.0%。研究结果可为卡线器的设计和优化提供参考依据。


关键词: 碳纤维导线,  卡线器,  夹嘴长度,  优化设计 
[[1]]   蒋平海,高怡,陈其泽,等.架空输电线路施工机具手册[M].北京:中国电力出版社,2014:1. JIANG Ping-hai, GAO Yi, CHEN Qi-ze, et al. Construction tool manual for overhead transmission line[M]. Beijing:China Electric Power Press, 2014:1.
[[2]]   中国电力科学研究院有限公司.碳纤维复合芯铝绞线施工工艺及验收导则:DL/T 5284-2012[S].北京:中国电力出版社,2012:3. China Electric Power Research Institute Co., Ltd.. Guide for construction and acceptance of carbon fibre complex core aluminium stranded wire:DL/T 5284-2012[S]. Beijing:China Electric Power Press, 2012:3.
[[3]]   中国电力科学研究院有限公司.架空输电线路施工机具基本技术要求:DL/T 875-2016[S].北京:中国电力出版社,2016:14-15. China Electric Power Research Institute Co., Ltd.. Basic technical requirements of construction machines and tools for overhead transmission line:DL/T 875-2016[S]. Beijing:China Electric Power Press, 2016:14-15.
[[4]]   陈曼龙,张琦.720K900Z型扩径导线卡线器的设计要点[J].陕西理工学院学报(自然科学版),2015,31(5):11-15. CHEN Man-long, ZHANG Qi. Key points in design of rope clamps for extended diameter wires[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 2015, 31(5):11-15.
[[5]]   孟宪彬,戴云飞,王红辉.特制卡线器在碳纤维复合芯导线施工中的应用[J].光纤与电缆及其应用技术,2014(5):39-41. MENG Xian-bin, DAI Yun-fei, WANG Hong-hui. Application of special wire stop-dog in carbon fiber composite core wire construction[J]. Optical Fiber & Electric Cable and Their Applications, 2014(5):39-41.
[[6]]   任军才.可调式放扭钢丝绳卡线器的研制[J].机电工程技术,2012,41(9):83-89. REN Jun-cai. Research and production of adjustable anti-twisting wire rope clamps[J]. Mechanical & Electrical Engineering Technology, 2012, 41(9):83-89.
[[7]]   何州文,陈新,王秋玲,等.国内碳纤维复合芯导线的研究和应用综述[J].电力建设,2010,31(4):90-93. HE Zhou-wen, CHEN Xin, WANG Qiu-ling, et al. Research and application overview of ACCC conductor in China[J]. Electric Power Construction, 2010, 31(4):90-93.
[[8]]   王秋玲,何州文,张卓,等.新型复合导线用碳纤维芯材的制备工艺[J].电力建设,2010,31(3):106-108. WANG Qiu-ling, HE Zhou-wen, ZHANG Zhuo, et al. Molding process of carbon fiber core material of new composite cable[J]. Electric Power Construction, 2010, 31(3):106-108.
[[9]]   张春雷,胡平,何凤生.架空导线碳纤维复合芯棒的结构、组织和性能分析[J].南方电网技术,2012,6(2):104-107. ZHANG Chun-lei, HU Ping, HE Feng-sheng. Analysis on the structure, texture and properties of carbon fiber composite core for an overhead conductor[J]. Southern Power System Technology, 2012, 6(2):104-107.
[[10]]   李磊,陈伟,万建成.碳纤维复合材料芯导线在国内推广应用的技术经济分析[J].电力建设,2012,33(9):79-82. LI Lei, CHEN Wei, WAN Jian-cheng. Technical and economic analysis on popularization and application of conductor with reinforced core of carbon fiber in China[J]. Electric Power Construction, 2012, 33(9):79-82.
[[11]]   万建成.架空导线应用技术[M].北京:中国电力出版社,2015:197. WAN Jian-cheng. Application technology of overhead wire[M]. Beijing:China Electric Power Press, 2015:197.
[[12]]   李玮,段成红,吴祥.碳纤维复合材料强度的有限元模拟[J].玻璃钢/复合材料,2011(1):20-23. LI Wei, DUAN Cheng-hong, WU Xiang. Finite element simulation for the strength of carbon fiber composite material[J]. Fiber Reinforced Plastics/Composites, 2011(1):20-23.
[[13]]   余虹云,王梁,李瑞,等.架空导线用碳纤维复合芯棒拉伸破坏形式分析[J].中国电力,2014,47(1):49-52. YU Hong-yun, WANG Liang, LI Rui, et al. Analysis on the tensile failure modes of carbon fiber composite core rod used in overhead stranded wires[J]. Electric Power, 2014, 47(1):49-52.
[[14]]   万建成,彭飞,江明,等.1660 mm2碳纤维导线放线用张力机卷筒槽底直径的计算[J].电力科学与工程,2017,33(12):67-72. WAN Jian-cheng, PENG Fei, JIANG Ming, et al. Calculation of bullwheel diameter of tensioner pulling 1660 mm2 carbon fiber conductor[J]. Electric Power Science and Engineering, 2017, 33(12):67-72.
[1] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chinese Journal of Engineering Design, 2022, 29(6): 720-730.
[2] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chinese Journal of Engineering Design, 2022, 29(3): 318-326.
[3] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.
[4] LIU Yong-jiang, PENG Xuan-lin, TANG Xiong-hui, LI Hua, QI Zi-mei. Resonance failure analysis and optimal design of axial cooling fan[J]. Chinese Journal of Engineering Design, 2021, 28(2): 203-209.
[5] WEI Wei, LIN Zai-sheng. Research on optimization design method of customized product based on RIR-MOO[J]. Chinese Journal of Engineering Design, 2020, 27(5): 592-599.
[6] LU Qing-hua, HUANG Ming-xian, CHEN Wei-lin. Multi-mode parametric optimization design of planar damped underactuated gripper[J]. Chinese Journal of Engineering Design, 2018, 25(6): 690-696.
[7] YANG Ying-xin, ZHOU Jian, HUANG Kui-lin, REN Hai-tao, CHEN Lian. Optimization design and application of PDC bit for directional reaming-while-drilling[J]. Chinese Journal of Engineering Design, 2018, 25(6): 668-674.
[8] ZHANG Zhao, ZHANG Ji-zhong. Design and dynamic simulation research of self-adaptive bobbin gripper for automatic doffer[J]. Chinese Journal of Engineering Design, 2018, 25(5): 539-545.
[9] KANG Xiao-yun, ZHAI Zhi-ping, GONG Yong-zhi, CHENG Hai-ying, WU Ya-mei. Analysis and improvement of transport performance of eccentric retractable finger type conveyor[J]. Chinese Journal of Engineering Design, 2017, 24(6): 655-660.
[10] LIN Quan, LIU Rui-lai. CAE analysis and molding process optimization for automobile trim cover[J]. Chinese Journal of Engineering Design, 2017, 24(6): 661-667.
[11] SHI Zhuo, GONG Guo-fang, LIU Tong, WU Wei-qiang, PENG Zuo. Design and simulation analysis of gripper and thrust energy-saving system for TBM test rig[J]. Chinese Journal of Engineering Design, 2017, 24(3): 323-329.
[12] WEI Xin-ming, SHEN Ping, SHAN Xiu-yang, LI Wei-song. Optimization of the backflow gap of pneumatic jetting valve based on numerical simulation[J]. Chinese Journal of Engineering Design, 2016, 23(3): 244-250.
[13] ZHANG Zhen, GONG Guo-fang, RAO Yun-yi, WU Wei-qiang, LIU Tong. Design and simulation analysis of gripper and thrust hydraulic system for TBM test rig[J]. Chinese Journal of Engineering Design, 2015, 22(5): 324-329.
[14] YANG Qian-ming, KONG Ling-qi, LI Jian, WANG Shi-gang, GUO Jian-wei. Modeling and simulation of synchronous speed control system about electric hydraulic proportional motor[J]. Chinese Journal of Engineering Design, 2015, 22(5): 330-336.
[15] ZHANG Zhen, GONG Guo-fang, RAO Yun-yi, WU Wei-qiang, LIU Tong. Design and simulation analysis of gripper and thrust hydraulic system for TBM test rig[J]. Chinese Journal of Engineering Design, 2015, 22(4): 324-329.