Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (2): 252-261    DOI: 10.3785/j.issn.1006-754X.2025.04.158
Optimization Design     
Design and analysis of nested cosine function type multi-axis flexure hinge
Meijuan XU(),Qiliang WANG(),Yongfeng HONG,Yiping LONG,Tong LIU,Bin GUO
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Download: HTML     PDF(3966KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The notch shapes of existing flexure hinges are primarily limited to conic sections and their combinations, which tend to fail due to excessive stress under complex loads and large angular movements. Therefore, a novel nested cosine function type multi-axis flexure hinge is designed. Firstly, based on the finite beam compliance matrix modeling (FBMM) method, the compliance and precision models of the novel flexure hinge were established. Compared with the finite element simulation results of ANSYS Workbench software, the relative errors of compliance and precision were less than 4.89% and 4.97% respectively, which verified the validity of theoretical models. Then, the effects of structural parameters on the compliance, precision and compliance-precision ratio of the novel flexure hinge were discussed, and compared with elliptic type, arc type and sinusoidal type multi-axis flexure hinges. The results indicated that the designed flexure hinge had the characteristics of high flexibility and low stress. Finally, an experimental platform for flexure hinge was built to test the deformation. The relative error between the measured results and the theoretical results was less than 8%, which further verified the validity of the compliance model. The nested cosine function type multi-axis flexure hinge can provide reference for the design of large-stroke compliant precision positioning stages.



Key wordsmulti-axis flexure hinge      finite beam compliance matrix modeling      compliance      stress      finite element simulation     
Received: 15 July 2024      Published: 06 May 2025
CLC:  TH 112  
Corresponding Authors: Qiliang WANG     E-mail: 2517608138@qq.com;wangqiliang@jxust.edu.cn
Cite this article:

Meijuan XU,Qiliang WANG,Yongfeng HONG,Yiping LONG,Tong LIU,Bin GUO. Design and analysis of nested cosine function type multi-axis flexure hinge. Chinese Journal of Engineering Design, 2025, 32(2): 252-261.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.158     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I2/252


嵌套余弦函数型多轴柔性铰链的设计与分析

现有柔性铰链的缺口形状主要局限于圆锥曲线及其组合,且在应对复杂载荷和大角度运动时容易因应力过大而失效。为此,设计了一种新型的嵌套余弦函数型多轴柔性铰链。首先,基于有限梁柔度矩阵建模(finite beam compliance matrix modeling, FBMM)法构建了新型柔性铰链的柔度和精度模型,并与ANSYS Workbench软件的有限元仿真结果对比,发现柔度和精度的相对误差分别小于4.89%和4.97%,验证了理论模型的有效性。然后,讨论了结构参数对新型柔性铰链柔度、精度和柔度精度比的影响,并与椭圆型、圆弧型、正弦型多轴柔性铰链进行了比较。结果表明,所设计的柔性铰链具有柔度大、应力低的特点。最后,通过搭建柔性铰链实验平台来测试其变形情况,实测结果与理论结果的相对误差小于8%,进一步验证了柔度模型的有效性。嵌套余弦函数型多轴柔性铰链可为大行程柔顺精密定位平台的设计提供参考。


关键词: 多轴柔性铰链,  有限梁柔度矩阵建模,  柔度,  应力,  有限元仿真 
Fig.1 Structure diagram of nested cosine function type multi-axis flexure hinge
Fig.2 Force diagram of nested cosine function type multi-axis flexure hinge
Fig.3 Deformation diagram of rotation center of nested cosine function type multi-axis flexure hinge
Fig.4 Finite element model of nested cosine function type multi-axis flexure hinge
组别lat
1102.01.0
2102.51.0
3122.01.0
4102.00.8
Table 1 Four groups of flexure hinge dimension parameters
组别对比项

Cx1, Fx /

(m·N-1)

Cy1, Mz /N-1Cθz, Mz /(N-1·m-1)

Cy1, Fy /

(m·N-1)

Cθz, Fy /N-1

Cx2, Fx /

(m·N-1)

Cy2, Mz /N-1

Cy2, Fy /

(m·N-1)

1理论值8.065×10-85.013×10-31.0022.671×10-55.013×10-34.037×10-84.894×10-43.259×10-6
仿真值8.326×10-85.116×10-31.0232.730×10-55.117×10-34.192×10-85.083×10-43.403×10-6
相对误差/%3.132.012.052.162.033.703.724.23
2理论值7.567×10-84.720×10-30.9432.499×10-54.720×10-33.788×10-84.326×10-42.846×10-6
仿真值7.904×10-84.832×10-30.9672.561×10-54.833×10-33.986×10-84.510×10-42.983×10-6
相对误差/%4.262.322.482.422.344.974.084.59
3理论值9.678×10-87.219×10-31.2024.604×10-57.219×10-34.844×10-87.048×10-45.575×10-6
仿真值9.912×10-87.322×10-31.2204.674×10-57.322×10-34.982×10-87.237×10-45.749×10-6
相对误差/%2.361.411.481.501.412.772.613.03
4理论值1.182×10-71.152×10-22.3026.082×10-51.152×10-25.918×10-81.056×10-36.859×10-6
仿真值1.222×10-71.170×10-22.3396.178×10-51.170×10-26.133×10-81.085×10-37.080×10-6
相对误差/%4.891.541.581.551.543.512.673.12
Table 2 Comparison of theoretical and simulated values of compliance and precision of flexure hinges
Fig.5 Influence of structural parameters of flexure hinge on compliance
Fig.6 Influence of structural parameters of flexure hinge on precision
Fig.7 Influence of structural parameters of flexure hinge on compliance-precision ratio
Fig.8 Comparison of compliance, precision and compliance-precision ratio of different flexure hinges
Fig.9 Comparison of compliance-stress ratio of different flexure hinges
Fig.10 Structural dimension of nested cosine function type multi-axis flexure hinge sample
Fig.11 Experimental platform for flexure hinge
Fig.12 Comparison of theoretical and measured values of displacement at point 1' and rotation angle at point 2'
[1]   PAROS J M, WEISBORD L. How to design flexure hinges[J]. Machine Design, 1965, 37(27): 151-156.
[2]   LOBONTIU N, PAINE J S N, GARCIA E, et al. Design of symmetric conic-section flexure hinges based on closed-form compliance equations[J]. Mechanism and Machine Theory, 2002, 37(5): 477-498.
[3]   LI Q, PAN C Y, XU X J. Closed-form compliance equations for power-function-shaped flexure hinge based on unit-load method[J]. Precision Engineering, 2013, 37(1): 135-145.
[4]   GONG J L, ZHANG Y F, MOSTAFA K, et al. Accurate stiffness modeling method for flexure hinges with a complex contour curve[J]. Micro and Nanosystems, 2021, 13(1): 24-31.
[5]   WANG R Q, ZHOU X Q, ZHU Z W. Development of a novel sort of exponent-sine-shaped flexure hinges[J]. Review of Scientific Instruments, 2013, 84(9): 095008.
[6]   WANG R Q, ZHOU X Q, ZHU Z W, et al. Development of a novel type of hybrid non-symmetric flexure hinges[J]. Review of Scientific Instruments, 2015, 86(8): 085003.
[7]   LIN R Z, ZHANG X M, LONG X J, et al. Hybrid flexure hinges[J]. Review of Scientific Instruments, 2013, 84(8): 085004.
[8]   CHEN G M, LIU X Y, DU Y L. Elliptical-arc-fillet flexure hinges: toward a generalized model for commonly used flexure hinges[J]. Journal of Mechanical Design, 2011, 133(8): 081002.
[9]   WEI H X, YANG J, WU F P, et al. Analytical modelling and experiments for hybrid multiaxis flexure hinges[J]. Precision Engineering, 2022, 76: 294-304.
[10]   WEI H X, TIAN Y L, ZHAO Y J, et al. Two-axis flexure hinges with variable elliptical transverse cross-sections[J]. Mechanism and Machine Theory, 2023, 181: 105183.
[11]   LI L J, ZHANG D, GUO S, et al. Design, modeling, and analysis of hybrid flexure hinges[J]. Mechanism and Machine Theory, 2019, 131: 300-316.
[12]   李立建, 姚建涛, 郭飞, 等. 混合型柔性铰链构型设计与柔度建模[J]. 机械工程学报, 2022, 58(21): 78-91. doi:10.3901/jme.2022.21.078
LI L J, YAO J T, GUO F, et al. Configuration design and compliance modeling of hybrid flexure hinges[J]. Journal of Mechanical Engineering, 2022, 58(21): 78-91.
doi: 10.3901/jme.2022.21.078
[13]   LI L J, ZHANG D, QU H B, et al. Generalized model and configuration design of multiple-axis flexure hinges[J]. Mechanism and Machine Theory, 2022, 169: 104677.
[14]   王传礼, 李成, 何涛, 等. 椭圆导角混合柔性铰链的设计计算与性能分析[J]. 中国机械工程, 2021, 32(9): 1017-1026.
WANG C L, LI C, HE T, et al. Design calculation and performance analysis of elliptical corner-filleted hybrid flexure hinges[J]. China Mechanical Engineering, 2021, 32(9): 1017-1026.
[15]   WANG Q L, LONG Y P, WEI J M, et al. Theoretical, numerical, and experimental investigation on the compliance and natural frequency of sinusoidal flexure hinges[J]. Engineering Reports, 2023, 5(7): e12626.
[16]   WANG Q L, HONG Y F, XU M J, et al. Theoretical, numerical, and experimental investigation on second-order Bezier curve flexure hinges[J]. Engineering Research Express, 2024, 6(1): 015078.
[17]   杨春辉, 刘平安. 圆弧型柔性球铰柔度设计计算[J]. 工程设计学报, 2014, 21(4): 389-392, 404. doi:10.3785/j.issn.1006-754X.2014.04.014
YANG C H, LIU P A. Design and calculation of compliance of arc flexure spherical hinge[J]. Chinese Journal of Engineering Design, 2014, 21(4): 389-392, 404.
doi: 10.3785/j.issn.1006-754X.2014.04.014
[18]   LI J B, ZHAO Y, WU Q W, et al. Design and analysis of the power-trigonometric function-shaped flexure hinges[J]. Review of Scientific Instruments, 2023, 94(9): 095105.
[19]   谢超, 陈云壮, 石光楠, 等. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
XIE C, CHEN Y Z, SHI G N, et al. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chinese Journal of Engineering Design, 2023, 30(5): 626-633.
[20]   LING M X, YUAN L, LAI J H, et al. Compliance and precision modeling of general notch flexure hinges using a discrete-beam transfer matrix[J]. Precision Engineering, 2023, 82: 233-250.
[21]   左皓琛, 梁松, 闫明. 不同参数对交叉簧片型柔性铰链刚度特性的影响[J]. 机电工程, 2023, 40(11): 1727-1734.
ZUO H C, LIANG S, YAN M. Influence of different parameters on stiffness characteristics of cross-spring flexure pivots[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(11): 1727-1734.
[1] Jian DU,Xijing ZHU,Jing LI. Design and analysis of two-dimensional precision positioning platform based on piezoelectric ceramic drive[J]. Chinese Journal of Engineering Design, 2025, 32(2): 199-207.
[2] Zhen CHEN,Nengpeng CHEN,Qingjie RAN,Qiaomu WANG,Chaocheng WEI,Haowen JU. Fatigue life prediction of sheer wave vibroseis vibrator baseplate coupled with welding residual stress[J]. Chinese Journal of Engineering Design, 2025, 32(1): 102-111.
[3] Weitao HAN,Tao WEN,Lei LIU,Junfeng HU. Design of soft pipeline robot based on Kresling origami structure[J]. Chinese Journal of Engineering Design, 2025, 32(1): 72-81.
[4] Zhihao XU,Xiaowei LU,Yuxin XIE,Leijie LAI. Design and analysis of three-degree-of-freedom large-stroke flexible tip-tilt stage driven by voice coil motor[J]. Chinese Journal of Engineering Design, 2025, 32(1): 82-91.
[5] Junxing LI,Rui GAO,Ming QIU,Yanke LI,Jingtao LIU,Zhiwei LIU. Reliability life evaluation method of rolling bearing considering dynamic time-varying loads[J]. Chinese Journal of Engineering Design, 2024, 31(4): 420-427.
[6] Ruiming YU,Yunyan MA,Wei CHI,Yuzhong SHEN. Design and analysis of all-metal hard sealing bidirectional zero-leakage triple eccentric butterfly valve[J]. Chinese Journal of Engineering Design, 2024, 31(4): 511-520.
[7] Yu YANG,Changqun YANG,Bo ZHAO. Measurement method of bolt axial stress based on ultrasonic guided waves[J]. Chinese Journal of Engineering Design, 2024, 31(3): 280-291.
[8] Junxing LI,Shijie NING,Ming QIU. Reliability design of radial clearance of rolling bearing[J]. Chinese Journal of Engineering Design, 2023, 30(6): 738-745.
[9] Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chinese Journal of Engineering Design, 2023, 30(5): 626-633.
[10] Zhangwei XIE,Xingbo ZHANG,Zhe XU,Yu ZHANG,Fengyun ZHANG,Xi WANG,Pingping WANG,Shufeng SUN,Haitao WANG,Jixin LIU,Weili SUN,Aixia CAO. Construction of surface temperature monitoring system for laser machining parts based on digital twin[J]. Chinese Journal of Engineering Design, 2023, 30(4): 409-418.
[11] Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material[J]. Chinese Journal of Engineering Design, 2023, 30(4): 419-428.
[12] Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chinese Journal of Engineering Design, 2023, 30(1): 39-47.
[13] Wen-bing TU,Xiao-wen YUAN,Jin-wen YANG,Ben-meng YANG. Research on dynamic characteristics of rolling bearing under different component fault conditions[J]. Chinese Journal of Engineering Design, 2023, 30(1): 82-92.
[14] Zhi-bo ZHAO,Da-qiang GU,Li-xin LI,Jing ZHANG. Modification design of cycloidal gear based on contact stress optimization[J]. Chinese Journal of Engineering Design, 2022, 29(6): 713-719.
[15] Yi-fan CHEN,Qian WU,Ling JIANG,Liang HUA. Detection method of post-weld residual stress treatment quality based on acoustic signal recognition[J]. Chinese Journal of Engineering Design, 2022, 29(3): 272-278.