Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 280-291    DOI: 10.3785/j.issn.1006-754X.2024.03.188
Theory and Method of Mechanical Design     
Measurement method of bolt axial stress based on ultrasonic guided waves
Yu YANG1(),Changqun YANG2,Bo ZHAO3,4()
1.Guangdong Yuchengda Communication Technology Co. , Ltd. , Shenzhen 518000, China
2.South China Company, China Oil & Gas Pipeline Network Corporation Co. , Ltd. , Guangzhou 510000, China
3.Research Institute of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080, China
4.Key Lab of Ultra-precision Intelligent Instrumentation of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150080, China
Download: HTML     PDF(4080KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Wind turbine blade is the core component of wind turbines. The blade bolt is not only the part that bears complex stress, but also the part that bears the highest load. In order to avoid potential hazard and economic loss caused by bolt breakage, an axial stress measurement system for in-service bolts based on ultrasonic guided waves is designed, which can achieve accurate measurement of axial stress for various types of bolts. Firstly, the group velocity dispersion curve of ultrasonic guided wave was obtained through numerical calculation, and a linear mathematical model of bolt axial stress and ultrasonic guided wave acoustic time was established based on the Hooke's law and acoustic elasticity effect. The effectiveness of ultrasonic guided wave stress measurement by single longitudinal wave transducer was verified by simulation in COMSOL software. Then, in view of the modal aliasing of ultrasonic guided wave echo signals and the interference of noise on the measured results of ultrasonic guided wave acoustic time in actual measurement, the denoising algorithm based on echo compensation was used to denoise the actual measurement signal. The empirical wavelet transform algorithm was used to decompose the modal of ultrasonic guided wave echo signal, and the cross-correlation method was used to obtain the accurate acoustic time of ultrasonic guided wave modal. Finally, the precise measurement of axial stress for 18 types of bolts within the 30%-90% yield strength was completed through experimental tests, and the relative measurement error was less than 2%. The research results are helpful to improve the bolt assembly process and standardize the worker's operation process.



Key wordsblade bolt      axial stress measurement      ultrasonic guided wave      dispersion curve      empirical wavelet transform     
Received: 14 July 2023      Published: 27 June 2024
CLC:  TH 73  
Corresponding Authors: Bo ZHAO     E-mail: 271674266@qq.com;hitzhaobo@hit.edu.cn
Cite this article:

Yu YANG,Changqun YANG,Bo ZHAO. Measurement method of bolt axial stress based on ultrasonic guided waves. Chinese Journal of Engineering Design, 2024, 31(3): 280-291.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.188     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/280


基于超声导波的螺栓轴向应力测量方法

风电叶片是风力发电机的核心部件,叶片螺栓不仅是承受复杂应力的零件,也是承受最高负载的零件。为避免螺栓断裂造成危险隐患和经济损失,设计了一种基于超声导波的在役螺栓轴向应力测量系统,可实现对多种型号螺栓轴向应力的精确测量。首先,通过数值计算得到超声导波群速度频散曲线,基于胡克定律和声弹性效应建立了螺栓轴向应力与超声导波声时的线性数学模型,并在COMSOL软件中通过仿真验证了单纵波换能器实现超声导波应力测量的有效性。然后,针对超声导波回波信号模态混叠以及实际测量中噪声对超声导波声时测量结果的干扰,利用基于回波补偿的降噪算法实现了对实际测量信号的降噪处理,并采用经验小波变换算法对超声导波回波信号进行了模态分解,利用互相关法得到超声导波模态的精确声时。最后,通过实验测试完成了18种型号的螺栓在30%~90%屈服强度内的轴向应力的精确测量,相对测量误差小于2%。研究结果有助于改进螺栓装配工艺以及规范工人操作流程。


关键词: 叶片螺栓,  轴向应力测量,  超声导波,  频散曲线,  经验小波变换 
Fig.1 Simplified bolt model
参数数值
弹性模量/GPa210
泊松比0.31
密度/(kg/m3)7 850
Table 1 Material performance parameters of alloy steel
Fig.2 Ultrasonic guided wave stress measurement simulation model for bolt
Fig.3 Ultrasonic guided wave echo waveform
Fig.4 Simulation results of ultrasonic guided wave echo under different axial stress
Fig.5 Noise reduction process of ultrasonic guided wave echo signal
Fig.6 Comparison of ultrasonic guided wave echo signals before and after noise reduction processing
Fig.7 Comparison of time-frequency analysis result of ultrasonic guided wave echo signals before and after noise reduction processing
Fig.8 Spectrum diagram of wavelet filter
Fig.9 Ultrasonic guided wave echo simulation signal
Fig.10 Modal decomposition results of ultrasonic guided wave echo simulation signal based on EWT
Fig.11 Spectrum diagram of modal component of ultrasonic guided wave echo simulation signal based on EWT
Fig.12 Modal decomposition results of ultrasonic guided wave echo simulation signal based on EMD
Fig.13 Spectrum diagram of modal component of ultrasonic guided wave echo simulation signal based on EMD
Fig.14 Physical drawing of some bolts
Fig.15 Ultrasonic guided wave echo experimental signal (M36×385 bolt)
Fig.16 Modal decomposition results of ultrasonic guided wave echo experimental signal based on EWT (M36×385 bolt)
Fig.17 Spectrum diagram of modal component of ultrasonic guided wave echo experimental signal based on EWT (M36×385 bolt)
拉伸仪力值/kN

横截面积/

mm2

对应轴向应力/MPa

声时差/

ns

081700
100122102
200245205
300367332
350428385
400490445
450551462
500612552
550673581
600734613
650796713
700857762
750918936
800979971
Table 2 Calibration experiment results for M36×385 bolt
Fig.18 Fitting curve between axial stress of M36×385 bolt and acoustic time difference of ultrasonic guided wave echo signal
拉伸仪力值/kN横截面积/mm2轴向应力/MPa相对误差/%
理论值实测值
4008174894890
4505515591.5
4805885900.3
5506736811.2
6237637650.3
Table 3 Measurement results of axial stress of M36×385 bolt
Fig.19 Relative measurement error of axial stress of 18 types of bolts
[1]   吕文春,马剑龙,陈金霞,等.风电产业发展现状及制约瓶颈[J].可再生能源,2018,36(8):1214-1218. doi:10.3969/j.issn.1671-5292.2018.08.019
LÜ W C, MA J L, CHEN J X, et al. Current situation and restriction bottleneck of development of wind power industry[J]. Renewable Energy Resources, 2018, 36(8): 1214-1218.
doi: 10.3969/j.issn.1671-5292.2018.08.019
[2]   言婷,周海波,邓航.风电叶片预埋型叶根连接螺栓抗疲劳优化设计研究[J].复合材料科学与工程,2021(1):102-106. doi:10.3969/j.issn.1003-0999.2021.01.016
YAN T, ZHOU H B, DENG H. Research on fatigue strength optimization of bushing connection bolts for wind power blades[J]. Composites Science and Engineering, 2021(1): 102-106.
doi: 10.3969/j.issn.1003-0999.2021.01.016
[3]   姜招喜,孙国峰,冯梅.风电叶片螺栓断裂失效分析[J].热加工工艺,2015,44(18):243-244. doi:10.14158/j.cnki.1001-3814.2015.18.072
JIANG Z X, SUN G F, FENG M. Fracture failure analysis of wind power blade bolts[J]. Hot Working Technology, 2015, 44(18): 243-244.
doi: 10.14158/j.cnki.1001-3814.2015.18.072
[4]   丁旭,武新军.在役螺栓轴力电磁超声测量系统的研制[J].无损检测,2016,38(6):48-52,64. doi:10.11973/wsjc201606012
DING X, WU X J. Development of EMAT based axial load measurement system for in-service bolts[J]. Nondestructive Testing, 2016, 38(6): 48-52, 64.
doi: 10.11973/wsjc201606012
[5]   徐春广,栗双怡,黄院生,等.基于扭矩法和超声法检测螺栓预紧力的误差分析[J].电子机械工程,2023,39(2):1-4.
XU C G, LI S Y, HUANG Y S, et al. Analysis of bolt preload measurement error with torque method and ultrasonic method[J]. Elecro-Mechanical Engineering, 2023, 39(2): 1-4.
[6]   江泽涛,朱士明.纵横波测已紧固螺栓轴向应力[J].应用声学,2000,19(1):16-21. doi:10.3969/j.issn.1000-310X.2000.01.004
JIANG Z T, ZHU S M. The measurement of the stress in a tightened bolt by the ultrasonic longitudinal and transverse waves[J]. Journal of Applied Acoustics, 2000, 19(1): 16-21.
doi: 10.3969/j.issn.1000-310X.2000.01.004
[7]   黄桥生,胡熠,刘世刚,等.在役风机螺栓超声检测新技术研究[J].湖北电力,2022,46(2):25-29.
HUANG Q S, HU Y, LIU S G, et al. Research on ultrasonic testing new technology for bolts of in-service wind turbines[J]. Hubei Electric Power, 2022, 46(2): 25-29.
[8]   向鹏宇,陈兵,邱菲菲,等.螺栓横向剪力的超声检测[J].无损检测,2022,44(3):36-39,74. doi:10.11973/wsjc202203008
XIANG P Y, CHEN B, QIU F F, et al. Ultrasonic testing of transverse shear force in bolt[J]. Nondestructive Testing, 2022, 44(3): 36-39, 74.
doi: 10.11973/wsjc202203008
[9]   PAN Q X, PAN R P, SHAO C, et al. Research review of principles and methods for ultrasonic measurement of axial stress in bolts[J]. Chinese Journal of Mechanical Engineering, 2020, 33: 11.
[10]   何存富,吴斌,范晋伟.超声柱面导波技术及其应用研究进展[J].力学进展,2001,31(2):203-214. doi:10.6052/1000-0992-2001-2-J2000-018
HE C F, WU B, FAN J W. Advances in ultrasonic cylindrical guided waves techniques and their applications[J]. Advances in Mechanics, 2001, 31(2): 203-214.
doi: 10.6052/1000-0992-2001-2-J2000-018
[11]   DAMLJANOVIC V, WEAVER R L. Propagating and evanescent elastic waves in cylindrical waveguides of arbitrary cross section[J]. Journal of the Acoustical Society of America, 2004, 115(4): 1572-1581.
[12]   徐春广,李骁,潘勤学,等.螺栓拉应力超声无损检测方法[J].应用声学,2014,33(2):102-106. doi:10.11684/j.issn.1000-310X.2014.02.002
XU C G, LI X, PAN Q X, et al. Bolt stress measurements by ultrasonic non-destructive methods[J]. Journal of Applied Acoustics, 2014, 33(2): 102-106.
doi: 10.11684/j.issn.1000-310X.2014.02.002
[13]   吴遵红,王子成,李羽可.风电螺栓超声导波检测技术仿真[J].特种设备安全技术,2018(5):43-46. doi:10.3969/j.issn.1674-1390.2018.05.019
WU Z H, WANG Z C, LI Y K. Simulation of ultrasonic guided wave testing technology for wind power bolts[J]. Safety Technology of Special Equipment, 2018(5): 43-46.
doi: 10.3969/j.issn.1674-1390.2018.05.019
[14]   DING X, WU X J, WANG Y G. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer[J]. Ultrasonics, 2014, 54(3): 914-920.
[15]   罗烨钶,陈永高,李升才.基于经验小波变换-噪声辅助分析的桥梁信号降噪方法[J].振动与冲击,2022,41(21):246-256.
LUO Y K, CHEN Y G, LI S C. Adaptive denoising method of bridge vibration signal based on EWT-noise aided analysis theory[J]. Journal of Vibration and Shock, 2022, 41(21): 246-256.
[16]   ERVIN B L, REIS H, BERNHARD J T, et al. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages[C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. San Diego, Mar. 9-13, 2008.
[17]   HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceeding of the Royal Society A, 1998, 454(1971): 903-995.
[18]   张淑清,翟欣沛,董璇,等.EMD及Duffing振子在小电流系统故障选线方法中的应用[J].中国电机工程学报,2013,33(10):161-167.
ZHANG S Q, ZHAI X P, DONG X, et al. Application of EMD and Duffing oscillator to fault line detection in un-effectively grounded system[J]. Proceedings of the CSEE, 2013, 33(10): 161-167.
[1] LIU Ruo-chen, XU Cheng, WANG Kui-yang, WANG Yi-min, SUN Jian-zhong. Research on performance parameters of new wear-site electrostatic sensor[J]. Chinese Journal of Engineering Design, 2020, 27(5): 645-653.