Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (2): 230-237    DOI: 10.3785/j.issn.1006-754X.2024.03.135
Robotic and Mechanism Design     
Kinematics analysis and simulation of a flexible picking robot arm
Weitao ZHANG(),Dongjie ZHAO(),Lu WANG,Xinmian BAO,Baosai HUANG
School of Mechanical & Automotive Engineering, Liaocheng University, Liaocheng 252059, China
Download: HTML     PDF(1904KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the shortcomings of rigid robot arm in fruit and vegetable picking, a flexible picking robot arm with simple structure and flexible movement was designed. Firstly, the kinematics model of the flexible picking robot arm was established based on the equal arc hypothesis, and the forward and inverse kinematics analysis from joint space to operation space and from driving space to joint space was carried out, as well as the decoupling analysis between the flexible joints. Then, the kinematics models of the flexible picking robot arm were numerically calculated by using MATLAB software, and the virtual prototype model of the flexible picking robot arm was established by ADAMS software. The kinematics simulation was carried out under the same working conditions as the theoretical analysis, and the accuracy of the theoretical analysis results was verified. The simulation results showed that the flexible picking robot arm could move flexibly and coordinatedly. The research results can provide a basis for the subsequent motion control of flexible robot arms.



Key wordsflexible picking robot arm      kinematics model      simulation analysis     
Received: 23 March 2023      Published: 26 April 2024
CLC:  TH 113  
Corresponding Authors: Dongjie ZHAO     E-mail: 1256587669@qq.com;zhaodongjie@lcu.edu.cn
Cite this article:

Weitao ZHANG,Dongjie ZHAO,Lu WANG,Xinmian BAO,Baosai HUANG. Kinematics analysis and simulation of a flexible picking robot arm. Chinese Journal of Engineering Design, 2024, 31(2): 230-237.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.135     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I2/230


一种柔性采摘机械臂的运动学分析与仿真

针对刚性机械臂在果蔬采摘作业中的不足,设计了一种结构简单、运动灵活的柔性采摘机械臂。首先,基于等圆弧假设建立了柔性采摘机械臂的运动学模型,对其进行了从关节空间到操作空间和从驱动空间到关节空间的正、逆运动学分析以及各柔性关节之间的解耦分析。然后,利用MATLAB软件对柔性采摘机械臂的运动学模型进行了数值计算,同时利用ADAMS软件建立柔性采摘机械臂的虚拟样机模型,选用与理论分析相同的工况开展运动学仿真,验证了理论分析结果的准确性。仿真结果表明,该柔性采摘机械臂可实现灵活、协调运动。研究结果可为后续柔性机械臂的运动控制提供依据。


关键词: 柔性采摘机械臂,  运动学模型,  仿真分析 
Fig.1 Structure of fruit and vegetable picking robot
Fig.2 Structure of flexible picking robot arm
Fig.3 Spatial mapping relation of flexible picking robot arm
Fig.4 Schematic diagram of coordinate system of flexible arm and distribution of rope holes of connecting seat
Fig.5 Schematic diagram of flexible joint motion
Fig.6 Schematic diagram of flexible joint bending motion
Fig.7 Inverse kinematics analysis process of flexible picking robot arm based on PSO
目标点/mmα1θ1α2θ2α3θ3
(130, 100, 1 460)2.770.29-3.140.795.43-0.79
(140, 200, 1 360)6.29-0.59-2.89-1.24-3.64-0.11
(150, 300, 1 260)5.93-0.83-2.79-1.54-1.190.22
(160, 400, 1 160)5.040.62-0.33-1.592.860.13
(170, 500, 1 000)-4.39-0.53-0.481.59-5.920.63
Table 1 Solution results of inverse kinematics for flexible picking robot arm
Fig.8 Schematic diagram of flexible unit structure
Fig.9 Schematic diagram of flexible unit fixed end section
Fig.10 Kinematics analysis results of flexible picking robot arm under single joint motion
Fig.11 Kinematics analysis results of flexible picking robot arm under combined motion of three joints
Fig.12 Virtual prototype model of flexible picking robot arm
Fig.13 Comparison of end position variation curves of flexible picking robot arm under different motion conditions
[1]   段洁利,陆华忠,王慰祖,等.水果采收机械的现状与发展[J].广东农业科学,2012,39(16):189-192. doi:10.3969/j.issn.1004-874X.2012.16.059
DUAN J L, LU H Z, WANG W Z, et al. Present situation and development of the fruit harvesting machinery[J]. Guangdong Agricultural Sciences, 2012, 39(16): 189-192.
doi: 10.3969/j.issn.1004-874X.2012.16.059
[2]   高国华,郑玉航,马帅,等.黄瓜采摘机械臂运动学分析与样机试验[J].中国农机化学报,2017,38(7):3-9.
GAO G H, ZHENG Y H, MA S, et al. Kinematic analysis and prototype test of cucumber harvesting manipulator[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(7): 3-9.
[3]   张文翔,张兵园,贡宇,等.果蔬采摘机器人机械臂研究现状与展望[J].中国农机化学报,2022,43(9):232-237,244.
ZHANG W X, ZHANG B Y, GONG Y, et al. Research status and prospect of fruit and vegetable picking robot manipulator[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 232-237, 244.
[4]   王丽丽,范晋伟,赵博,等.果蔬采摘机械臂结构设计与性能测试[J].农业工程,2017,7(2):107-113,23. doi:10.3969/j.issn.2095-1795.2017.02.028
WANG L L, FAN J W, ZHAO B, et al. Structural design and performance test of fruit and vegetable picking manipulator[J]. Agricultural Engineering, 2017, 7(2): 107-113, 23.
doi: 10.3969/j.issn.2095-1795.2017.02.028
[5]   赵云伟,耿德旭,刘晓敏,等.气动柔性果蔬采摘机械手运动学分析与实验[J].农业机械学报,2019,50(8):31-42. doi:10.6041/j.issn.1000-1298.2019.08.004
ZHAO Y W, GENG D X, LIU X M, et al. Kinematics analysis and experiment of pneumatic flexible fruit and vegetable picking manipulator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 31-42.
doi: 10.6041/j.issn.1000-1298.2019.08.004
[6]   WEBSTER R J, ROMANO J M, COWAN N J. Mechanics of precurved-tube continuum robots[J]. IEEE Transactions on Robotics, 2008, 25(1): 67-78.
[7]   MCMAHAN W, JONES B A, WALKER I D. Design and implementation of a multi-section continuum robot: Air-Octor[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Aug. 2-6, 2005.
[8]   MCMAHAN W, CHITRAKARAN V, CSENCSITS M, et al. Field trials and testing of the octarm continuum manipulator[C]// Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, May 15-19, 2006.
[9]   ZHANG L F, XU M, YANG H. Research on soft manipulator actuated by shape memory alloy (SMA) springs[C]//2017 IEEE International Conference on Real-time Computing and Robotics (RCAR). Okinawa, Jul. 14-18, 2017.
[10]   SIMAAN N. Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Apr. 18-22, 2005.
[11]   胡海燕,王鹏飞,孙立宁,等.线驱动连续型机器人的运动学分析与仿真[J].机械工程学报,2010,46(19):1-8. doi:10.3901/jme.2010.19.001
HU H Y, WANG P F, SUN L N, et al. Kinematic analysis and simulation for cable-driven continuum robot[J]. Journal of Mechanical Engineering, 2010, 46(19): 1-8.
doi: 10.3901/jme.2010.19.001
[12]   郭伟,肖滔,胡海燕,等.一种连续型肠道机器人的通过性研究与仿真[J].机械与电子,2010,28(7):63-67. doi:10.3969/j.issn.1001-2257.2010.07.019
GUO W, XIAO T, HU H Y, et al. Trafficability analysis and simulation for a continuum endoscope robot[J]. Machinery and Electronics, 2010, 28(7): 63-67.
doi: 10.3969/j.issn.1001-2257.2010.07.019
[13]   胡海燕,李伟达,李娟,等.结肠镜机器人结构设计与通过性研究[J].哈尔滨工程大学学报,2013,34(2):233-239. doi:10.3969/j.issn.1006-7043.201204049
HU H Y, LI W D, LI J, et al. Structure design and trafficability of colonoscopic robot[J]. Journal of Harbin Engineering University, 2013, 34(2): 233-239.
doi: 10.3969/j.issn.1006-7043.201204049
[14]   薛忠健.基于D-H法的锻造机器人运动学分析[J].机电工程技术,2020,49(11):40-42,128. doi:10.3969/j.issn.1009-9492.2020.11.010
XUE Z J. Kinematic analysis of forging robot based on D-H method[J]. Mechanical & Electrical Engineering Technology, 2020, 49(11): 40-42, 128.
doi: 10.3969/j.issn.1009-9492.2020.11.010
[15]   刘守法,王晋鹏,李勇,等.基于D-H法的5-DOF串并联机床运动学分析[J].制造技术与机床,2018(11):110-115.
LIU S F, WANG J P, LI Y, et al. Kinematics analysis of 5-DOF series-parallel machine tool based on D-H method[J]. Manufacturing Technology & Machine Tool, 2018(11): 110-115.
[16]   方方闻怡,梁医,冯虎田.基于D-H法的轨道摇臂摄影机器人运动学分析[J].机械设计与制造工程,2021,50(8):15-20. doi:10.3969/j.issn.2095-509X.2021.08.003
FANG F W Y, LIANG Y, FENG H T. Kinematics analysis of orbital rocker robot based on D-H method[J]. Machine Design and Manufacturing Engineering, 2021, 50(8): 15-20.
doi: 10.3969/j.issn.2095-509X.2021.08.003
[17]   白晓慧,何小娟,孙超利,等.基于分层学习的改进PSO算法求解复杂优化问题[J].太原科技大学学报,2021,42(3):169-174. doi:10.3969/j.issn.1673-2057.2021.03.001
BAI X H, HE X J, SUN C L, et al. Particle swarm optimization algorithm based on hierarchical learning for complex optimization problem[J]. Journal of Taiyuan University of Science and Technology, 2021, 42(3): 169-174.
doi: 10.3969/j.issn.1673-2057.2021.03.001
[18]   薛永生,吴立尧.基于模拟退火的改进粒子群算法研究及应用[J].海军航空工程学院学报,2018,33(2):248-252. doi:10.7682/j.issn.1673-1522.2018.02.012
XUE Y S, WU L Y. Research and application of improved PSO algorithm based on simulated annealing[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(2): 248-252.
doi: 10.7682/j.issn.1673-1522.2018.02.012
[19]   周驰,高海兵,高亮,等.粒子群优化算法[J].计算机应用研究,2003,20(12):7-11. doi:10.3969/j.issn.1001-3695.2003.12.003
ZHOU C, GAO H B, GAO L, et al. Particle swarm optimization (PSO) algorithm[J]. Application Research of Computers, 2003, 20(12): 7-11.
doi: 10.3969/j.issn.1001-3695.2003.12.003
[1] Wenjing ZHI,Guocai LI,Weijuan ZHENG,Chen ZHANG,Dongping LIU,Xiaoyi CAI. Design of civil aircraft cabin door operation panel based on ergonomics[J]. Chinese Journal of Engineering Design, 2024, 31(1): 107-119.
[2] Liyong TIAN,Rui TANG,Ning YU,Hongyue CHEN. Design and application of belt lifting mechanism for replacing idler of belt conveyor[J]. Chinese Journal of Engineering Design, 2023, 30(6): 667-677.
[3] Zhan YANG,Qipeng LI,Wei TANG,Kecheng QIN,Suifan CHEN,Kaidi WANG,Yang LIU,Jun ZOU. Design and analysis of small land-air deformable amphibious robot[J]. Chinese Journal of Engineering Design, 2023, 30(3): 325-333.
[4] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[5] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[6] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[7] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chinese Journal of Engineering Design, 2021, 28(6): 709-719.
[8] ZHANG Shen-tong. Analysis of landing load of aircraft landing gear based on virtual prototype technology[J]. Chinese Journal of Engineering Design, 2021, 28(6): 758-763.
[9] CHEN Zhen, XIONG Tao, YANG Yan-qing, XUE Xiao-wei. Sealing performance analysis and structure optimization of sealing ring of soluble ball seat[J]. Chinese Journal of Engineering Design, 2021, 28(6): 720-728.
[10] YU Ru-fei, KOU Xin, CHEN Wei. Simulation analysis of novel surface texture based on CFD[J]. Chinese Journal of Engineering Design, 2021, 28(4): 466-472.
[11] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[12] HAO Di-long, HE Xia, WANG Guo-rong, YI Jian-guo, CHEN Zhang-bin. Structure optimization of integral slip groove[J]. Chinese Journal of Engineering Design, 2019, 26(5): 534-543.
[13] WANG Ke-fei, SHI Pei-cheng, PENG Shan-shan, DIAO Jie-sheng. Static stiffness analysis of automotive BIW under different boundary constraint conditions[J]. Chinese Journal of Engineering Design, 2019, 26(4): 441-451.
[14] CHEN Zhao-ming, XU Ze-yu, ZOU Jing-song, ZHAO Ying, SHI Ming-quan. Hydraulic system design of multi-functional laying trolley equipment in tunnel construction and its response characteristic analysis[J]. Chinese Journal of Engineering Design, 2019, 26(1): 116-122.
[15] FAN Shu-yuan, WANG Hai-bo, WU Xiao-di, ZHANG Le, ZHANG Long. Research on load-bearing performance of industrial assembly exoskeleton manipulator[J]. Chinese Journal of Engineering Design, 2018, 25(6): 697-702.