Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (4): 562-568    DOI: 10.3785/j.issn.1006-754X.2025.05.102
机械零部件与装备设计     
考虑轴电流损伤的伺服电机轴承加速寿命试验装置设计
王嘉1,2(),陈清强1,3,张子贤1,2,赵一卓1,2,张露予1,2()
1.河北工业大学 智能配用电装备与系统全国重点实验室,天津 300401
2.河北工业大学 电气工程学院,天津 300401
3.河北工业大学 机械工程学院,天津 300401
Design of servo motor bearing accelerated life test device considering shaft current damage
Jia WANG1,2(),Qingqiang CHEN1,3,Zixian ZHANG1,2,Yizhuo ZHAO1,2,Luyu ZHANG1,2()
1.State Key Laboratory of Intelligent Power Distribution Equipment and System, Hebei University of Technology, Tianjin 300401, China
2.School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
3.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
 全文: PDF(3192 KB)   HTML
摘要:

针对当前轴承加速寿命试验装置难以准确还原伺服电机轴承在服役工况下受轴电流损伤、摩擦磨损等因素影响的问题,设计了一种考虑轴电流损伤的伺服电机轴承加速寿命试验装置。该试验装置可以模拟伺服电机轴承在轴电流损伤、摩擦磨损等因素影响下的性能退化过程,同时实时采集并分析相关监测数据,实现对伺服电机轴承性能退化过程的可视化表征。利用该试验装置开展轴电流对轴承的损伤分析试验和基于服役工况的轴承加速寿命试验。结果表明,所设计的试验装置具备准确模拟伺服电机轴承服役工况的功能,可为该类轴承的可靠性研究提供设备支撑与试验条件。

关键词: 加速寿命试验装置轴电流损伤轴承性能退化    
Abstract:

Aiming at the problem that the current bearing accelerated life test device is difficult to accurately restore the influence of factors such as shaft current damage, friction and wear on servo motor bearings under service conditions, a servo motor bearing accelerated life test device considering shaft current damage is designed. This test device could simulate the performance degradation process of servo motor bearings under the influence of factors such as shaft current damage, friction and wear, while collecting and analyzing relevant monitoring data in real time to realize visual characterization of the performance degradation process of servo motor bearings. The analysis test of bearing damage caused by shaft current and the bearing accelerated life test based on service conditions were carried out by using the test device. The results show that the designed test device has the function of accurately simulating the service conditions of servo motor bearings, which can provide equipment support and test conditions for the reliability research of such bearings.

Key words: accelerated life test device    shaft current damage    bearing    performance degradation
收稿日期: 2025-01-08 出版日期: 2025-09-01
CLC:  TH 39  
基金资助: 河北省高等教育教学改革研究与实践项目(2023GJJG035)
通讯作者: 张露予     E-mail: jwangno1@163.com;lyzhang2011@hebut.edu.cn
作者简介: 王 嘉(1988—),女,研究员,博士,从事机器人可靠性测试与评估研究,E-mail: jwangno1@163.com,https://orcid.org/0000-0002-5909-4895
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王嘉
陈清强
张子贤
赵一卓
张露予

引用本文:

王嘉,陈清强,张子贤,赵一卓,张露予. 考虑轴电流损伤的伺服电机轴承加速寿命试验装置设计[J]. 工程设计学报, 2025, 32(4): 562-568.

Jia WANG,Qingqiang CHEN,Zixian ZHANG,Yizhuo ZHAO,Luyu ZHANG. Design of servo motor bearing accelerated life test device considering shaft current damage[J]. Chinese Journal of Engineering Design, 2025, 32(4): 562-568.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.102        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I4/562

图1  伺服电机轴承加速寿命试验装置
图2  轴承电流测试装置的结构组成1—高频电源;2—示波器;3—伺服电缸;4—电阻(5 Ω);5—绝缘层加铝箔纸(电源正极);6—碳刷(电源负极);7—绝缘联轴器;8—绝缘盘;9—轴承;10—绝缘螺栓;11—驱动电机;12—转矩转速传感器。
图3  控制模块运行原理
参数数值
内圈直径/mm35
外圈直径/mm62
轴承中径/mm48.5
滚珠直径/mm8
基本额定动载荷/kN16.5
基本额定静载荷/kN10.5
接触角/(°)0
滚珠数量/个11
表1  NSK6007ZZ滚动轴承参数
图4  共模电压产生原理
图5  EDM轴电流传递路径
图6  轴承内圈滚道轴电流损伤
图7  不同转速下的轴电压数据
图8  轴承性能退化过程的可视化表征结果
图9  试验用轴承
图10  轴承的原始振动信号时域图
图11  轴承的原始振动信号频域图
[1] 周玉松, 陈旭东, 程放, 等. 直流伺服电机不确定性系统鲁棒控制器研究[J]. 工程设计学报, 2015, 22(6): 589-595, 601.
ZHOU Y S, CHEN X D, CHENG F, et al. Robust controller design of DC servo motor uncertainty system[J]. Chinese Journal of Engineering Design, 2015, 22(6): 589-595, 601.
[2] 杨新颖. 伺服电机控制技术的应用及发展趋向分析[J]. 现代制造技术与装备, 2019, 55(5): 91-92.
YANG X Y. Application and development trend analysis of servo motor control technology[J]. Modern Manufacturing Technology and Equipment, 2019, 55(5): 91-92.
[3] 聂挺, 王文格, 戴俊良. 负载动态特性对伺服电机跟随性能影响研究[J]. 工程设计学报, 2013, 20(4): 309-314.
NIE T, WANG W G, DAI J L. Research on influence of the characteristics of dynamic load on servo motor's following performance[J]. Chinese Journal of Engineering Design, 2013, 20(4): 309-314.
[4] 李军星, 高锐, 邱明, 等. 考虑动态时变载荷的滚动轴承可靠性寿命评估方法[J]. 工程设计学报, 2024, 31(4): 420-427.
LI J X, GAO R, QIU M, et al. Reliability life evaluation method of rolling bearing considering dynamic time-varying loads[J]. Chinese Journal of Engineering Design, 2024, 31(4): 420-427.
[5] 杨黎凯, 张来斌, 何仁洋, 等. 基于BT-TVPF的变转速下轴承剩余寿命预测方法[J]. 机电工程, 2025, 42(6): 1118-1125.
YANG L K, ZHANG L B, HE R Y, et al. Remaining useful life prediction method of bearings under variable speeds based on BT-TVPF[J]. Journal of Mechanical & Electrical Engineering, 2025, 42(6): 1118-1125.
[6] 卢建军, 邱明, 李迎春. 自润滑向心关节轴承加速寿命试验及寿命分析[J]. 机械传动, 2016, 40(10): 105-109, 126.
LU J J, QIU M, LI Y C. Accelerated life test and life analysis of self-lubricating radial spherical plain bearing[J]. Journal of Mechanical Transmission, 2016, 40(10): 105-109, 126.
[7] 雷群, 张翰乾, 郭伟科, 等. 基于加速寿命的机床主轴轴承寿命研究[J]. 机电工程技术, 2019, 48(8): 9-11, 80.
LEI Q, ZHANG H Q, GUO W K, et al. Research on bearing life of machine tool spindle based on HALT[J]. Mechanical & Electrical Engineering Technology, 2019, 48(8): 9-11, 80.
[8] 李小彭, 苏晶, 徐金池, 等. 轴电流损伤球轴承的载荷分布和刚度变化分析[J]. 振动与冲击, 2023, 42(9): 68-76.
LI X P, SU J, XU J C, et al. Load distribution and stiffness change of ball bearing damaged by shaft current[J]. Journal of Vibration and Shock, 2023, 42(9): 68-76.
[9] 迟连强, 张殿海, 赵俊清, 等. 旋转电机轴承电蚀损伤机理与缓解措施研究进展[J]. 电工技术学报, 2024, 39(20): 6409-6430.
CHI L Q, ZHANG D H, ZHAO J Q, et al. Research progress on the mechanism and mitigation measure of electrical corrosion damage in rotating motor bearings[J]. Transactions of China Electrotechnical Society, 2024, 39(20): 6409-6430.
[10] 王芹芹, 刘瑞芳, 任雪娇. 基于多物理场分析的电机轴承放电击穿[J]. 电工技术学报, 2020, 35(20): 4251-4257.
WANG Q Q, LIU R F, REN X J. The motor bearing discharge breakdown based on the multi-physics field analysis[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4251-4257.
[11] 李玥, 黄孙伟, 徐川. 三电平NPC逆变器中点电压平衡混合调制策略[J]. 计算机应用与软件, 2021, 38(2): 85-92.
LI Y, HUANG S W, XU C. Three-level NPC inverter midpoint voltage balance hybrid modulation strategy[J]. Computer Applications and Software, 2021, 38(2): 85-92.
[12] PLAZENET T, BOILEAU T, CAIRONI C, et al. A comprehensive study on shaft voltages and bearing currents in rotating machines[J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3749-3759.
[13] BINDER A, MUETZE A. Scaling effects of inverter-induced bearing currents in AC machines[J]. IEEE Transactions on Industry Applications, 2008, 44(3): 769-776.
[14] COLLIN R, YOKOCHI A, VON JOUANNE A. EDM damage assessment and lifetime prediction of motor bearings driven by PWM inverters[C]//2022 IEEE Energy Conversion Congress and Exposition. Detroit, MI, Oct. 9-13, 2022.
[15] 杨国安. 机械设备故障诊断实用技术[M]. 北京: 中国石化出版社, 2007: 244-245.
YANG G A. Practical technology of mechanical equipment fault diagnosis[M]. Beijing: China Petrochemical Press, 2007: 244-245.
doi: 10.3785/j.issn.1006-754X.2025.05.102
[15] 本文链接:
王嘉, 陈清强, 张子贤, 等. 考虑轴电流损伤的伺服电机轴承加速寿命试验装置设计[J]. 工程设计学报, 2025, 32(4): 562-568. doi:10.3785/j.issn.1006-754X.2025.05.102
doi: 10.3785/j.issn.1006-754X.2025.05.102
[1] 罗丫,葛可可,袁晓文,涂文兵. 基于分段位移激励函数的贯穿式故障建模及滚动轴承振动特性分析[J]. 工程设计学报, 2025, 32(1): 112-120.
[2] 田助新,齐思田,程春彦,鹿怀庆. 缝隙节流液体静压轴承油膜刚度系数的研究[J]. 工程设计学报, 2024, 31(5): 634-640.
[3] 高羡明,牛金召,蔡志祥,任晓松. 表面织构对液钠动静压滑动轴承润滑特性的影响研究[J]. 工程设计学报, 2024, 31(5): 641-652.
[4] 李军星,高锐,邱明,李燕科,刘静涛,刘志卫. 考虑动态时变载荷的滚动轴承可靠性寿命评估方法[J]. 工程设计学报, 2024, 31(4): 420-427.
[5] 李军星,宁世杰,邱明. 滚动轴承径向游隙可靠性设计[J]. 工程设计学报, 2023, 30(6): 738-745.
[6] 辛晓承,龙威,高浩,王萍,雷基林. 计算模型对空气静压轴承特性分析有效性的影响[J]. 工程设计学报, 2023, 30(2): 226-236.
[7] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[8] 张龙隆,肖正明,刘江,刘卫标. 对转圆柱滚子轴承动态特性分析[J]. 工程设计学报, 2023, 30(1): 93-101.
[9] 田助新,郭明慧,曹海印. 环形油腔液体静压推力轴承动态特性的影响因素研究[J]. 工程设计学报, 2022, 29(4): 456-464.
[10] 李军星,李燕科,牛凯岑,邱明,王治华,庞晓旭,陈立海. 基于双方差随机过程的半导体激光器寿命评估[J]. 工程设计学报, 2022, 29(3): 293-299.
[11] 吴国沛, 余银犬, 涂文兵. 永磁同步电机故障诊断研究综述[J]. 工程设计学报, 2021, 28(5): 548-558.
[12] 张砀砀, 胡剑虹, 柯海森, 梁明轩. 基于颜色识别的轴承端面检测及整理装置设计[J]. 工程设计学报, 2021, 28(4): 489-494.
[13] 黄龙艺, 王华, 嵇栩. 考虑紧固螺栓的三排滚柱式转盘轴承载荷分布计算[J]. 工程设计学报, 2021, 28(3): 350-357.
[14] 熊伟, 葛志华, 庞乔, 李曼迪, 王友. 轮毂轴承单元过盈量理论设计及试验研究[J]. 工程设计学报, 2021, 28(1): 41-47.
[15] 曾光, 边强, 赵春江, 殷玉枫, 冯毅杰. 变参数下角接触球轴承保持架的稳定性与振动特性分析[J]. 工程设计学报, 2020, 27(6): 735-743.