Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (4): 550-561    DOI: 10.3785/j.issn.1006-754X.2025.05.101
机械零部件与装备设计     
丘陵山区土槽试验台车设计与性能分析
刘伟健1(),张家豪1,余小兰2,李东昊3,王媛1,李漫漫1,张兆国1()
1.昆明理工大学 现代农业工程学院,云南 昆明 650500
2.贵州省农业机械技术推广总站,贵州 贵阳 550000
3.华南农业大学 农学院,广东 广州 510642
Design and performance analysis of soil groove test trolley in hilly and mountainous areas
Weijian LIU1(),Jiahao ZHANG1,Xiaolan YU2,Donghao LI3,Yuan WANG1,Manman LI1,Zhaoguo ZHANG1()
1.Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China
2.Guizhou Provincial Agricultural Machinery Technology Extension General Station, Guiyang 550000, China
3.College of Agriculture, South China Agricultural University, Guangzhou 510642, China
 全文: PDF(6775 KB)   HTML
摘要:

针对目前丘陵山区“无机可用、无机好用”以及农业生产能力差等问题,开展了丘陵山区土槽试验台车的设计与性能分析。首先,对土槽试验台车的机械系统、数据采集系统及控制系统进行了设计。然后,基于RecurDyn-EDEM耦合仿真对土槽试验台车的通过性进行了分析。最后,对土槽试验台车的整体性能进行了试验与分析。仿真结果表明:土槽试验台车从t=0 s开始加速,其行进速度在t=2.7 s时达到0.7 m/s,随后行进速度开始骤减直至仿真结束,最终的行进速度在0.1 m/s左右波动。在仿真过程中,限位弹簧能够提供大约700 N的摩擦力,悬挂装置的合力达到了6 665 N,仿真结果初步验证了土槽试验台车设计方案的合理性。试验结果表明:土槽试验台车动力输出轴的角加速度为14.74 rad/s2,其实际转速与目标转速之间存在15~20 r/min的误差;土槽试验台车的最大行进速度可达1.6 m/s,所需制动时间为2.61 s,对应的制动距离为1.62 m。当土槽试验台车以0.2 m/s为目标速度行进并搭配三七挖掘铲开展模拟试验时,其在2 s内即可达到目标速度,所测得的最大工作阻力为2 990.07 N。上述试验数据均满足设计要求,可为丘陵山区土槽试验台车的设计提供理论依据和参考。

关键词: 丘陵山区土槽试验台车RecurDyn-EDEM耦合仿真性能分析    
Abstract:

In response to the current problems of "no machines available, no machines easy to use" and poor agricultural production capacity in hilly and mountainous areas, the design and performance analysis of a soil groove test trolley in hilly and mountainous areas have been carried out. Firstly, the mechanical system, data acquisition system and control system of the soil groove test trolley were designed. Then, the passing ability of the soil groove test trolley was analyzed based on the RecurDyn-EDEM coupling simulation. Finally, the overall performance of the soil groove test trolley was tested and analyzed. The simulation results showed that the soil groove test trolley started to accelerate at t=0 s, and its travelling speed reached 0.7 m/s at t=2.7 s. Then, the travelling speed began to decrease sharply until the end of simulation, and the final travelling speed fluctuated around 0.1 m/s. During the simulation process, the limit spring could provide a friction force of approximately 700 N, and the resultant force of the suspension device reached 6 665 N. The simulation results preliminarily verified the rationality of the soil groove test trolley design scheme. The test results showed that the angular acceleration of the power output shaft of the soil groove test trolley was 14.74 rad/s2, and there was an error of 15 to 20 r/min between the actual rotational speed and the target rotational speed. The maximum travelling speed of the soil groove test trolley could reach 1.6 m/s, with a required braking time of 2.61 s and a corresponding braking distance of 1.62 m. When the soil groove test trolley travelled at a target speed of 0.2 m/s and was used in conjunction with a Sanqi excavation shovel for simulation test, it could reach the target speed within 2 s, and the measured maximum working resistance was 2 990.07 N. The above test data all meet the design requirements, which can provide theoretical basis and reference for the design of soil groove test trolleys in hilly and mountainous areas.

Key words: hilly and mountainous areas    soil groove test trolley    RecurDyn-EDEM coupling simulation    performance analysis
收稿日期: 2025-01-06 出版日期: 2025-09-01
CLC:  S 225.5  
基金资助: 国家重点研发计划资助项目(2022YFD2002004);国家自然科学基金资助项目(51865023)
通讯作者: 张兆国     E-mail: 531964726@qq.com;zzg@kust.edu.cn
作者简介: 刘伟健(1993—),男,讲师,博士,从事农业装备设计与制造研究,E-mail: 531964726@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘伟健
张家豪
余小兰
李东昊
王媛
李漫漫
张兆国

引用本文:

刘伟健,张家豪,余小兰,李东昊,王媛,李漫漫,张兆国. 丘陵山区土槽试验台车设计与性能分析[J]. 工程设计学报, 2025, 32(4): 550-561.

Weijian LIU,Jiahao ZHANG,Xiaolan YU,Donghao LI,Yuan WANG,Manman LI,Zhaoguo ZHANG. Design and performance analysis of soil groove test trolley in hilly and mountainous areas[J]. Chinese Journal of Engineering Design, 2025, 32(4): 550-561.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.101        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I4/550

图1  丘陵山区土槽试验台车结构示意图1—镇压辊;2—镇压架;3—液压缸;4—固定架;5—驱动轮;6—驱动前桥;7—强电箱;8—横向限位装置;9—液压泵站;10—弱电箱;11—从动后桥;12—悬挂装置;13—被测农具;14—挂接模块;15—铅垂限位装置;16—减速器;17—牵引电机;18—主车架;19—带传动装置;20—动力输出轴;21—动力电机;22—牛头顶式液压升降器。
图2  悬挂装置效果图
连接杆最小长度最大长度
上拉杆680800
左、右提升杆340450
下拉杆720850
表1  悬挂装置连接杆的尺寸参数 (mm)
参数牵引电机动力电机
额定功率/kW152
额定电压/V380380
额定转速/(r/min)1 5001 500
额定频率/Hz5050
极对数44
表2  驱动电机参数
性能参数数值
最大扭矩/(N·m)125
输出功率/kW202
工作压力/MPa7
最大流量/(L/min)32
表3  液压泵站性能参数
图3  液压泵站实物图1—电机;2—油泵;3—油箱;4—风冷装置;5—压力表;6—油路块;7—电磁阀;8—加油口;9—液位计。
图4  液压式线控制动器的外形尺寸
基本信息属性与数值
驱动形式伺服电机
缸径/mm22.22
有效行程/mm42
油口规格/(mm×mm)ISO M10×1.0
主缸带压力闭环
工作电压/V12
表4  液压式线控制动器的基本信息
图5  土槽试验台车的数据采集途径
图6  简化后的土槽试验台车仿真模型
图7  镇压装置和主车架模型的网格划分
图8  土槽试验台车及其关键部件的静力学仿真结果
图9  RecurDyn-EDEM耦合仿真示意
图10  土槽试验台车耦合仿真模型
图11  RecurDyn-EDEM耦合仿真环境
图12  土槽试验台车行进速度的变化曲线
图13  挖掘铲上的壅土效果
图14  铅垂限位装置的受力变化曲线
图15  悬挂装置的受力变化曲线
图16  驱动轮1、2的摩擦力变化曲线
图17  驱动轮3、4的摩擦力变化曲线
图18  土槽试验台车物理样机
图19  土槽试验台车行进速度随时间的变化曲线
图20  动力输出轴转速随时间的变化曲线
行进速度/(m/s)制动距离/m制动时间/s
0.2~0.8<0.20>0.50
1.00.300.60
1.10.410.71
1.20.611.24
1.30.741.82
1.41.052.07
1.51.302.10
1.61.622.61
表5  土槽试验台车的制动性能测试数据
图21  搭载三七挖掘铲的测试现场
图22  上位机软件的报表数据整理结果
[1] 陈正发. 云南坡耕地质量评价及土壤侵蚀/干旱的影响机制研究[D]. 重庆: 西南大学, 2019. doi:10.3390/su12177230
CHEN Z F. Quality evaluation of slope farmland in Yunnan Province and soil erosion/drought influencing mechanisms[D]. Chongqing: Southwest University, 2019.
doi: 10.3390/su12177230
[2] 余红斌, 邓庆. 云南省农业机械化转型升级的思考[J]. 南方农机, 2020, 51(13): 56.
YU H B, DENG Q. Thoughts on the transformation and upgrading of agricultural mechanization in Yunnan Province [J]. China Southern Agricultural Machinery, 2020, 51(13): 56.
[3] 韩昌远. 云南省丘陵山区农机化发展浅析[J]. 中国农机监理, 2021(7): 46-47.
HAN C Y. Analysis on the development of agricultural mechanization in hilly and mountainous areas of Yunnan Province[J]. China Agricultural Machinery Safety Supervision, 2021(7): 46-47.
[4] 李军, 金嗣淳, 王桂英, 等. 土槽试验台研究综述[J]. 湖北理工学院学报, 2015, 31(5): 1-5.
LI J, JIN S C, WANG G Y, et al. Review of study on soil bin test-bed[J]. Journal of Hubei Polytechnic University, 2015, 31(5): 1-5.
[5] 许鹏. 农业机械田间土槽系统研制[D]. 广州: 华南农业大学, 2020.
XU P. Development of agricultural machinery field soil trough system[D]. Guangzhou: South China Agricultural University, 2020.
[6] 周晶. 土槽试验台车系统的设计和研究[D]. 南京: 南京农业大学, 2015.
ZHOU J. The design and research of soil bin facility system [D]. Nanjing: Nanjing Agricultural University, 2015.
[7] 谢建华, 曹晓冉, 杨业龙, 等. 小型土槽台车测试系统的设计与试验[J]. 机械设计, 2017, 34(7): 38-42.
XIE J H, CAO X R, YANG Y L, et al. Design and experiment of small-scale soil bin testing system[J]. Journal of Machine Design, 2017, 34(7): 38-42.
[8] 杨旭. 电力四驱农机土槽试验台车的研制[D]. 长春: 吉林大学, 2014.
YANG X. The design of the electric all-wheel-drive farm machinery soil bin testing car[D]. Changchun: Jilin University, 2014.
[9] 姚忠志, 沈东华, 皮灵杰, 等. 简易土槽试验台的设计与试验[J]. 农机化研究, 2023, 45(8): 39-45, 102.
YAO Z Z, SHEN D H, PI L J, et al. Design and test of simple soil trough test bench[J]. Journal of Agricultural Mechanization Research, 2023, 45(8): 39-45, 102.
[10] PÁSZTOR J, POPA-MÜLLER I. Study of three-point linkage of power machine[J]. Műszaki Tudományos Közlemények, 2021, 14(1): 60-64.
[11] MUDROV A P, MUDROV A G, YAKHIN S M, et al. Study of spatial hinge mechanisms and their use in agricultural machines[J]. BIO Web of Conferences, 2020, 17: 00012.
[12] TAMÁS K. The role of bond and damping in the discrete element model of soil-sweep interaction[J]. Biosystems Engineering, 2018, 169: 57-70.
[13] 中国农业机械化科学研究院. 农业机械设计手册[M]. 北京: 中国农业科学技术出版社, 2007.
Chinese Academy of Agricultural Mechanization Sciences. Handbook of agricultural machinery design[M]. Beijing: China Agricultural Science and Technology Press, 2007.
[14] 解开婷. 三七根土复合体分离机理研究[D]. 昆明: 昆明理工大学, 2022.
XIE K T. Study on separation mechanism of Panax notoginseng soil complex[D]. Kunming: Kunming University of Science and Technology, 2022.
[15] 周刘川. 导轨式四驱农耕试验台车的设计与研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
ZHOU L C. Design and research of rail-wheel-drive test trolley[D]. Harbin: Harbin Engineering University, 2014.
[16] 中国农业机械化科学研究院. 实用机械设计手册[M]. 北京: 中国农业机械出版社, 1985.
Chinese Academy of Agricultural Mechanization Sciences. Practical mechanical design manual[M]. Beijing: China Agricultural Machinery Press, 1985.
[17] 谢小四, 刘军. 西门子S7-1200与S7-200 SMART通信探究[J]. 现代制造技术与装备, 2022, 58(1): 90-92.
XIE X S, LIU J. Research on communication between Siemens S7-1200 and S7-200 SMART[J]. Modern Manufacturing Technology and Equipment, 2022, 58(1): 90-92.
[18] 于艳, 龚丽农, 尚书旗. 农机土槽试验动力学参数测试系统的研制[J]. 农业工程学报, 2011, 27(): 323-328.
YU Y, GONG L N, SHANG S Q. Development of soil bin test dynamic parameters measurement system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(): 323-328.
[19] 王法安, 倪畅, 张兆国, 等. 三七收获机挖掘铲减阻特性分析与试验[J]. 农业机械学报, 2024, 55(7): 179-190, 199.
WANG F A, NI C, ZHANG Z G, et al. Analysis and experiment on drag reduction characteristics of digging shovel of Panax notoginseng harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(7): 179-190, 199.
doi: 10.3785/j.issn.1006-754X.2025.05.101
[19] 本文链接:
刘伟健, 张家豪, 余小兰, 等. 丘陵山区土槽试验台车设计与性能分析[J]. 工程设计学报, 2025, 32(4): 550-561. doi:10.3785/j.issn.1006-754X.2025.05.101
doi: 10.3785/j.issn.1006-754X.2025.05.101
[1] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[2] 孙香红, 袁玉杰, 张卓, 郭潇洒. 零初始索力自复位耗能器的工作性能分析[J]. 工程设计学报, 2018, 25(5): 607-616.
[3] 黄秋波, 岳 杰, 徐维胜. 一种液压机械无级变速器的性能及动平衡分析[J]. 工程设计学报, 2006, 13(6): 396-399.