优化设计 |
|
|
|
|
基于NSGA-Ⅱ和TOPSIS法的横波可控震源振动器平板疲劳寿命优化 |
陈振1,2( ),冉庆杰1( ),英晓洋1,陈能鹏1,魏超成1,王乔木1 |
1.西南石油大学 机电工程学院,四川 成都 610500 2.页岩气评价与开采四川省重点实验室,四川 成都 610500 |
|
Fatigue life optimization of sheer wave vibroseis vibrator baseplate based on NSGA-Ⅱ and TOPSIS method |
Zhen CHEN1,2( ),Qingjie RAN1( ),Xiaoyang YING1,Nengpeng CHEN1,Chaocheng WEI1,Qiaomu WANG1 |
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China 2.Sichuan Key Laboratory of Shale Gas Evaluation and Exploitation, Chengdu 610500, China |
引用本文:
陈振,冉庆杰,英晓洋,陈能鹏,魏超成,王乔木. 基于NSGA-Ⅱ和TOPSIS法的横波可控震源振动器平板疲劳寿命优化[J]. 工程设计学报, 2025, 32(2): 272-280.
Zhen CHEN,Qingjie RAN,Xiaoyang YING,Nengpeng CHEN,Chaocheng WEI,Qiaomu WANG. Fatigue life optimization of sheer wave vibroseis vibrator baseplate based on NSGA-Ⅱ and TOPSIS method[J]. Chinese Journal of Engineering Design, 2025, 32(2): 272-280.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.141
或
https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/272
|
1 |
陈振. 可控震源振动器平板疲劳寿命和疲劳可靠性分析研究[D]. 成都: 西南石油大学, 2016. doi:10.1111/ffe.12467 CHEN Z. Research on the fatigue life and fatigue reliability analysis of the vibroseis baseplate[D]. Chengdu: Southwest Petroleum University, 2016.
doi: 10.1111/ffe.12467
|
2 |
VAN DO V N, LEE C H, CHANG K H. High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model[J]. International Journal of Fatigue, 2015, 70: 51-62.
|
3 |
何海风, 刘怀举, 朱才朝, 等. 残余应力对齿轮弯曲疲劳的量化影响研究[J]. 机械工程学报, 2023, 59(4): 53-61. doi:10.3901/jme.2023.04.053 HE H F, LIU H J, ZHU C C, et al. Quantitative effect of residual stress on gear bending fatigue[J]. Journal of Mechanical Engineering, 2023, 59(4): 53-61.
doi: 10.3901/jme.2023.04.053
|
4 |
李莹. 公路钢桥疲劳性能及可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. LI Y. Research on fatigue performance and reliability of highway steel bridges[D]. Harbin: Harbin Institute of Technology, 2008.
|
5 |
MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
|
6 |
丁彦闯, 兆文忠. 焊接结构抗疲劳优化设计方法及应用[J]. 焊接学报, 2008, 29(6): 29-32, 114. DING Y C, ZHAO W Z. Anti-fatigue optimization design of welded structure[J]. Transactions of the China Welding Institution, 2008, 29(6): 29-32, 114.
|
7 |
张红卫, 桂良进, 范子杰. 焊接残余应力对桥壳疲劳寿命的影响研究[J]. 机械工程学报, 2022, 58(24): 102-110. doi:10.3901/jme.2022.24.102 ZHANG H W, GUI L J, FAN Z J. Fatigue life prediction and experiment of an axle housing considering welding residual stresses[J]. Journal of Mechanical Engineering, 2022, 58(24): 102-110.
doi: 10.3901/jme.2022.24.102
|
8 |
丁勇, 韩凌霞, 吕建华, 等. 模数式桥梁伸缩缝疲劳寿命分析与结构优化[J]. 中国公路学报, 2021, 34(2): 265-275. DING Y, HAN L X, LÜ J H, et al. Fatigue life analysis and structural optimization of modular bridge expansion joint[J]. China Journal of Highway and Transport, 2021, 34(2): 265-275.
|
9 |
周杰, 贾云献, 刘鑫, 等. 基于疲劳寿命的履带车辆侧减速器传动轴结构优化[J]. 机械设计, 2019, 36(4): 82-86. ZHOU J, JIA Y X, LIU X, et al. Structural optimization of tracked vehicle’s side-reducer drive shaft based on the fatigue-life prediction[J]. Journal of Machine Design, 2019, 36(4): 82-86.
|
10 |
许期英, 钟自锋. 汽车横向稳定杆疲劳寿命分析及其优化设计[J]. 机械强度, 2019, 41(5): 1228-1232. XU Q Y, ZHONG Z F. Fatigue life analysis and optimization design of vehicle horizontal stabilizer bar[J]. Journal of Mechanical Strength, 2019, 41(5): 1228-1232.
|
11 |
LUKIĆ M, CREMONA C. Probabilistic optimization of welded joints maintenance versus fatigue and fracture[J]. Reliability Engineering & System Safety, 2001, 72(3): 253-264.
|
12 |
王剑, 王悦东, 陈秉智. 焊接结构焊缝疲劳寿命的灵敏度分析[J]. 固体力学学报, 2010, 31(): 281-284. WANG J, WANG Y D, CHEN B Z. Structural stress method based sensitivity analysis of fatigue life evaluation about weld structures[J]. Chinese Journal of Solid Mechanics, 2010, 31(): 281-284.
|
13 |
RIZZO C M, AYALA-URAGA E. Fatigue crack growth assessment of welded joints in ships structures: a reliability-based sensitivity study[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Jun. 4-9, 2006.
|
14 |
叶红玲, 苏鹏飞, 王伟伟, 等. 疲劳寿命约束下的连续体结构拓扑优化[J]. 北京工业大学学报, 2020, 46(3): 236-244. YE H L, SU P F, WANG W W, et al. Continuum topology optimization with fatigue life constraint[J]. Journal of Beijing University of Technology, 2020, 46(3): 236-244.
|
15 |
宋烨空, 杨金堂, 徐子晗, 等. 关节轴承静态疲劳特性的响应面优化[J]. 机械设计与制造, 2022(2): 229-232, 236. SONG Y K, YANG J T, XU Z H, et al. Response surface optimization of static fatigue characteristics of joint bearings[J]. Machinery Design & Manufacture, 2022(2): 229-232, 236.
|
16 |
田旭杨, 陈泽君. 基于改进NSGA-Ⅱ的列车运行多目标优化方法[J]. 计算机应用, 2021, 41(): 153-161. TIAN X Y, CHEN Z J. Multi-objective optimization method of train operation based on improved NSGA-Ⅱ[J]. Journal of Computer Applications, 2021, 41(): 153-161.
|
17 |
陈振, 陈能鹏, 冉庆杰, 等. 耦合焊接残余应力的横波可控震源振动器平板疲劳寿命预测[J]. 工程设计学报, 2025, 32(1): 102-111. CHEN Z, CHEN N P, RAN Q J, et al. Fatigue life prediction of sheer wave vibroseis vibrator baseplate coupled with welding residual stress[J]. Chinese Journal of Engineering Design, 2025, 32(1): 102-111.
|
18 |
赵永翔, 高庆, 王金诺. 估计三种常用应力-寿命模型概率设计S—N曲线的统一方法[J]. 核动力工程, 2001, 22(1): 42-52. ZHAO Y X, GAO Q, WANG J N. Unified approach for estimating the probabilistic design S-N curves of three commonly used fatigue stress-life models[J]. Nuclear Power Engineering, 2001, 22(1): 42-52.
|
19 |
CHEN Z, LI T, XUE X W, et al. Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Engineering Failure Analysis, 2021, 127: 105357.
|
20 |
陈炉云, 郭永晋, 易宏. 含焊接残余应力的结构模型参数修正研究[J]. 振动与冲击, 2020, 39(8): 245-249. CHEN L Y, GUO Y J, YI H. Model parameter updating study consideration of welding residual stress distribution[J]. Journal of Vibration and Shock, 2020, 39(8): 245-249.
|
21 |
魏崇一. T型接头焊接残余应力分析和释放研究[D]. 秦皇岛: 燕山大学, 2020. WEI C Y. Analysis and relaxation study of residual stress in T joint welding[D]. Qinhuangdao: Yanshan University, 2020.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|