Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 272-280    DOI: 10.3785/j.issn.1006-754X.2025.04.141
优化设计     
基于NSGA-ⅡTOPSIS法的横波可控震源振动器平板疲劳寿命优化
陈振1,2(),冉庆杰1(),英晓洋1,陈能鹏1,魏超成1,王乔木1
1.西南石油大学 机电工程学院,四川 成都 610500
2.页岩气评价与开采四川省重点实验室,四川 成都 610500
Fatigue life optimization of sheer wave vibroseis vibrator baseplate based on NSGA-Ⅱ and TOPSIS method
Zhen CHEN1,2(),Qingjie RAN1(),Xiaoyang YING1,Nengpeng CHEN1,Chaocheng WEI1,Qiaomu WANG1
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Sichuan Key Laboratory of Shale Gas Evaluation and Exploitation, Chengdu 610500, China
 全文: PDF(3735 KB)   HTML
摘要:

横波可控震源振动器平板作为页岩气勘探中的关键部件,其疲劳寿命直接影响可控震源的使用寿命和勘探精度。然而,传统的振动器平板疲劳寿命优化方法未考虑平板与平板齿间焊接残余应力的影响,导致平板结构在抗疲劳优化设计方面效果不佳。为此,使用局部灵敏度法对平板疲劳寿命进行敏感性分析,确定了焊接残余应力为影响疲劳寿命的关键因素。随后,建立了平板的各向最大焊接残余应力与焊接速度和焊接层间温度之间的数学模型,并以各向最大焊接残余应力为约束,以疲劳寿命为优化目标,建立相应的优化模型。最后,利用NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ,非支配排序遗传算法-Ⅱ)获取Pareto解集,并结合熵权法和TOPSIS(technique for order preference by similarity to ideal solution,逼近理想解排序)法确定最佳优化方案:焊接速度为10.23 mm/s,焊接层间温度为105 ℃。结果表明,优化后平板的疲劳寿命为10.23年,相比优化前提高了17.72%。研究结果可为横波可控震源振动器平板的疲劳寿命优化提供科学有效的理论方法和工程指导。

关键词: 横波可控震源振动器平板疲劳寿命焊接残余应力NSGA-ⅡTOPSIS法    
Abstract:

The sheer wave vibroseis vibrator baseplate is a key component in shale gas exploration, and its fatigue life directly affects the service life of vibroseis and the exploration accuracy. However, traditional optimization methods for vibrator baseplate fatigue life ignore the welding residual stress between the baseplate and the baseplate teeth, resulting in poor performance in anti-fatigue optimization design for the baseplate structure. Therefore, the local sensitivity method was used to conduct a sensitivity analysis for the fatigue life of the baseplate, and the welding residual stress was determined as the key factor affecting the fatigue life. Subsequently, mathematical models between the maximum welding residual stresses in all directions of the baseplate and the welding speed and interlayer temperature were established. Meanwhile, with the maximum welding residual stresses in all directions as the constraints and the fatigue life as the optimization target, the corresponding optimization model was constructed. Finally, the NSGA-Ⅱ (non-dominated sorting genetic algorithm-Ⅱ) was used to obtain the Pareto solution set, and the best optimization scheme was determined by combining the entropy weight method and the TOPSIS (technique for order preference by similarity to ideal solution): the welding speed was 10.23 mm/s and the welding interlayer temperature was 105 ℃. The results showed that the fatigue life of the optimized baseplate was 10.23 years, which was 17.72% higher than that before optimization. The research results can provide scientific and effective theoretical methods and engineering guidance for the fatigue life optimization of the sheer wave vibroseis vibrator baseplate.

Key words: sheer wave vibroseis    vibrator baseplate    fatigue life    welding residual stress    NSGA-Ⅱ    TOPSIS method
收稿日期: 2024-05-20 出版日期: 2025-05-06
CLC:  TH 16  
基金资助: 页岩气评价与开采四川省重点实验室资助项目(YSK2022013);四川省科技厅自然科学基金面上项目(2024NSFSC0094)
通讯作者: 冉庆杰     E-mail: 117976897@qq.com;1638785198@qq.com
作者简介: 陈 振(1985—),男,副教授,硕士生导师,博士,从事油气装备疲劳行为、可靠性设计和安全评价及理论等研究,E-mail: 117976897@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈振
冉庆杰
英晓洋
陈能鹏
魏超成
王乔木

引用本文:

陈振,冉庆杰,英晓洋,陈能鹏,魏超成,王乔木. 基于NSGA-ⅡTOPSIS法的横波可控震源振动器平板疲劳寿命优化[J]. 工程设计学报, 2025, 32(2): 272-280.

Zhen CHEN,Qingjie RAN,Xiaoyang YING,Nengpeng CHEN,Chaocheng WEI,Qiaomu WANG. Fatigue life optimization of sheer wave vibroseis vibrator baseplate based on NSGA-Ⅱ and TOPSIS method[J]. Chinese Journal of Engineering Design, 2025, 32(2): 272-280.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.141        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/272

图1  横波可控震源结构
图2  振动器平板疲劳寿命曲线
图3  振动器平板疲劳寿命影响因素的灵敏度比值曲线
设计变量取值
焊接速度/(mm/s)6、8、10、12
焊接层间温度/℃100、150、200、250
表1  焊接速度与焊接层间温度的取值
焊接速度/(mm/s)

焊接层间

温度/℃

最大焊接残余应力/MPa
XYZ
6100490.75185.90110.83
150490.67168.63102.93
200489.55153.9893.24
250488.44150.0590.42
8100470.42186.93135.47
150498.04165.73112.91
200496.80153.67100.52
250523.02169.67118.79
10100460.20114.02108.28
150499.89110.4881.70
200493.83131.1398.51
250501.36170.83115.58
12100501.91128.10100.62
150529.27135.3294.56
200514.95141.41108.94
250511.10136.43125.22
表2  不同焊接工艺参数下振动器平板的各向最大焊接残余应力
焊接层间温度/℃X向最大焊接残余应力Y向最大焊接残余应力Z向最大焊接残余应力
仿真值/MPa计算值/MPa相对误差/%仿真值/MPa计算值/MPa相对误差/%仿真值/MPa计算值/MPa相对误差/%
120501.78488.78-2.59177.53174.22-1.86114.02118.503.93
180507.39500.22-1.41161.40155.07-3.9294.3997.943.76
220508.07502.56-1.08154.70157.711.9599.00100.271.28
表3  振动器平板各向最大焊接残余应力的仿真值与计算值对比( v=8 mm/s)
图4  振动器平板 X 向最大焊接残余应力的变化规律
图5  振动器平板 Y 向最大焊接残余应力的变化规律
图6  振动器平板 Z 向最大焊接残余应力的变化规律
图7  NSGA-Ⅱ的求解流程
参数数值参数数值
交叉概率0.9变异概率0.1
交叉分布指数20变异分布指数20
种群数量/个400迭代数/次200
表4  NSGA-Ⅱ的参数设置
图8  基于NSGA-Ⅱ的振动器平板焊接残余应力的Pareto解集
图9  焊接工艺参数对各向焊接残余应力的贡献度
性能指标焊接速度焊接层间温度
X向焊接残余应力0.113 00.158 2
Y向焊接残余应力0.198 50.014 7
Z向焊接残余应力0.084 20.157 5
表5  焊接工艺参数对各向焊接残余应力的影响权重
性能指标dj+dj-ηj排序结果
X向焊接残余应力0.085 50.146 40.631 21
Y向焊接残余应力0.143 50.114 30.443 33
Z向焊接残余应力0.114 30.142 80.555 52
表6  各向焊接残余应力与正、负理想解的贴近度及其排序
1 陈振. 可控震源振动器平板疲劳寿命和疲劳可靠性分析研究[D]. 成都: 西南石油大学, 2016. doi:10.1111/ffe.12467
CHEN Z. Research on the fatigue life and fatigue reliability analysis of the vibroseis baseplate[D]. Chengdu: Southwest Petroleum University, 2016.
doi: 10.1111/ffe.12467
2 VAN DO V N, LEE C H, CHANG K H. High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model[J]. International Journal of Fatigue, 2015, 70: 51-62.
3 何海风, 刘怀举, 朱才朝, 等. 残余应力对齿轮弯曲疲劳的量化影响研究[J]. 机械工程学报, 2023, 59(4): 53-61. doi:10.3901/jme.2023.04.053
HE H F, LIU H J, ZHU C C, et al. Quantitative effect of residual stress on gear bending fatigue[J]. Journal of Mechanical Engineering, 2023, 59(4): 53-61.
doi: 10.3901/jme.2023.04.053
4 李莹. 公路钢桥疲劳性能及可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
LI Y. Research on fatigue performance and reliability of highway steel bridges[D]. Harbin: Harbin Institute of Technology, 2008.
5 MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
6 丁彦闯, 兆文忠. 焊接结构抗疲劳优化设计方法及应用[J]. 焊接学报, 2008, 29(6): 29-32, 114.
DING Y C, ZHAO W Z. Anti-fatigue optimization design of welded structure[J]. Transactions of the China Welding Institution, 2008, 29(6): 29-32, 114.
7 张红卫, 桂良进, 范子杰. 焊接残余应力对桥壳疲劳寿命的影响研究[J]. 机械工程学报, 2022, 58(24): 102-110. doi:10.3901/jme.2022.24.102
ZHANG H W, GUI L J, FAN Z J. Fatigue life prediction and experiment of an axle housing considering welding residual stresses[J]. Journal of Mechanical Engineering, 2022, 58(24): 102-110.
doi: 10.3901/jme.2022.24.102
8 丁勇, 韩凌霞, 吕建华, 等. 模数式桥梁伸缩缝疲劳寿命分析与结构优化[J]. 中国公路学报, 2021, 34(2): 265-275.
DING Y, HAN L X, LÜ J H, et al. Fatigue life analysis and structural optimization of modular bridge expansion joint[J]. China Journal of Highway and Transport, 2021, 34(2): 265-275.
9 周杰, 贾云献, 刘鑫, 等. 基于疲劳寿命的履带车辆侧减速器传动轴结构优化[J]. 机械设计, 2019, 36(4): 82-86.
ZHOU J, JIA Y X, LIU X, et al. Structural optimization of tracked vehicle’s side-reducer drive shaft based on the fatigue-life prediction[J]. Journal of Machine Design, 2019, 36(4): 82-86.
10 许期英, 钟自锋. 汽车横向稳定杆疲劳寿命分析及其优化设计[J]. 机械强度, 2019, 41(5): 1228-1232.
XU Q Y, ZHONG Z F. Fatigue life analysis and optimization design of vehicle horizontal stabilizer bar[J]. Journal of Mechanical Strength, 2019, 41(5): 1228-1232.
11 LUKIĆ M, CREMONA C. Probabilistic optimization of welded joints maintenance versus fatigue and fracture[J]. Reliability Engineering & System Safety, 2001, 72(3): 253-264.
12 王剑, 王悦东, 陈秉智. 焊接结构焊缝疲劳寿命的灵敏度分析[J]. 固体力学学报, 2010, 31(): 281-284.
WANG J, WANG Y D, CHEN B Z. Structural stress method based sensitivity analysis of fatigue life evaluation about weld structures[J]. Chinese Journal of Solid Mechanics, 2010, 31(): 281-284.
13 RIZZO C M, AYALA-URAGA E. Fatigue crack growth assessment of welded joints in ships structures: a reliability-based sensitivity study[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Jun. 4-9, 2006.
14 叶红玲, 苏鹏飞, 王伟伟, 等. 疲劳寿命约束下的连续体结构拓扑优化[J]. 北京工业大学学报, 2020, 46(3): 236-244.
YE H L, SU P F, WANG W W, et al. Continuum topology optimization with fatigue life constraint[J]. Journal of Beijing University of Technology, 2020, 46(3): 236-244.
15 宋烨空, 杨金堂, 徐子晗, 等. 关节轴承静态疲劳特性的响应面优化[J]. 机械设计与制造, 2022(2): 229-232, 236.
SONG Y K, YANG J T, XU Z H, et al. Response surface optimization of static fatigue characteristics of joint bearings[J]. Machinery Design & Manufacture, 2022(2): 229-232, 236.
16 田旭杨, 陈泽君. 基于改进NSGA-Ⅱ的列车运行多目标优化方法[J]. 计算机应用, 2021, 41(): 153-161.
TIAN X Y, CHEN Z J. Multi-objective optimization method of train operation based on improved NSGA-Ⅱ[J]. Journal of Computer Applications, 2021, 41(): 153-161.
17 陈振, 陈能鹏, 冉庆杰, 等. 耦合焊接残余应力的横波可控震源振动器平板疲劳寿命预测[J]. 工程设计学报, 2025, 32(1): 102-111.
CHEN Z, CHEN N P, RAN Q J, et al. Fatigue life prediction of sheer wave vibroseis vibrator baseplate coupled with welding residual stress[J]. Chinese Journal of Engineering Design, 2025, 32(1): 102-111.
18 赵永翔, 高庆, 王金诺. 估计三种常用应力-寿命模型概率设计SN曲线的统一方法[J]. 核动力工程, 2001, 22(1): 42-52.
ZHAO Y X, GAO Q, WANG J N. Unified approach for estimating the probabilistic design S-N curves of three commonly used fatigue stress-life models[J]. Nuclear Power Engineering, 2001, 22(1): 42-52.
19 CHEN Z, LI T, XUE X W, et al. Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Engineering Failure Analysis, 2021, 127: 105357.
20 陈炉云, 郭永晋, 易宏. 含焊接残余应力的结构模型参数修正研究[J]. 振动与冲击, 2020, 39(8): 245-249.
CHEN L Y, GUO Y J, YI H. Model parameter updating study consideration of welding residual stress distribution[J]. Journal of Vibration and Shock, 2020, 39(8): 245-249.
21 魏崇一. T型接头焊接残余应力分析和释放研究[D]. 秦皇岛: 燕山大学, 2020.
WEI C Y. Analysis and relaxation study of residual stress in T joint welding[D]. Qinhuangdao: Yanshan University, 2020.
[1] 陈振,陈能鹏,冉庆杰,王乔木,魏超成,鞠浩文. 耦合焊接残余应力的横波可控震源振动器平板疲劳寿命预测[J]. 工程设计学报, 2025, 32(1): 102-111.
[2] 田立勇,张佳豪,于宁,于晓涵,张硕. 掘进机回转台疲劳寿命预测及影响因素研究[J]. 工程设计学报, 2025, 32(1): 92-101.
[3] 许顺海,周小磊,龚国芳,洪昊岑,张鹏,刘尚,范亚磊. 基于剩余寿命的柱塞泵可再制造性评估[J]. 工程设计学报, 2024, 31(5): 557-564.
[4] 戚其松,李成刚,董青,陈钰浩,徐航. 起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计[J]. 工程设计学报, 2023, 30(3): 380-389.
[5] 化春键,李冬冬,蒋毅,俞建峰,陈莹. 双频激振下带V形缺口轴的疲劳寿命研究[J]. 工程设计学报, 2023, 30(1): 102-108.
[6] 郝春永, 王栋亮, 郑津洋, 徐平, 顾超华. 铝内胆复合材料储氢瓶爆破压力与疲劳寿命关系研究[J]. 工程设计学报, 2021, 28(5): 594-601.
[7] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[8] 陈振, 周阳, 敬爽, 黄志强, 陈言. 震源振动器平板损伤机理及其疲劳寿命预测研究[J]. 工程设计学报, 2019, 26(6): 658-665.
[9] 李松梅, 郑哲, 李帅帅, 常德功. 减振型三叉式万向联轴器结构及其疲劳寿命分析[J]. 工程设计学报, 2019, 26(5): 520-526.
[10] 王刚, 黄灵辉, 刘劲军. 超深矿井提升机卷筒动态应力与疲劳寿命研究[J]. 工程设计学报, 2018, 25(6): 703-710.
[11] 蔡玉强, 朱东升. 基于动力学仿真的高速曲柄压力机曲轴疲劳寿命分析[J]. 工程设计学报, 2017, 24(6): 680-686.
[12] 黄志强, 彭珣, 李刚. 可控震源振动器平板多频响应分析[J]. 工程设计学报, 2017, 24(6): 648-654.
[13] 任远, 张成成, 高靖云, 李孟光. 涡轮盘篦齿裂纹扩展的有限元数值模拟[J]. 工程设计学报, 2016, 23(2): 152-159,165.
[14] 申杰斌, 唐东林. 应力场强法中场径参数的研究[J]. 工程设计学报, 2016, 23(1): 22-27.
[15] 张 强,王海舰,胡 南. 起升载荷下门式起重机主梁损伤与疲劳寿命预测研究[J]. 工程设计学报, 2015, 22(5): 461-468.