Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 262-271    DOI: 10.3785/j.issn.1006-754X.2025.04.160
优化设计     
沙溪庙组硬质砂岩地层异形PDC齿的设计与研究
马亚超1(),罗逸非1,荣准2,陶垒3,曾汇川2,蒋东2,张文远3
1.西南石油大学 机电工程学院,四川 成都 610500
2.中国石油西南油气田公司 川东北气矿,四川 达州 635000
3.中国石油集团西部钻探工程有限公司 工程技术研究院,新疆 乌鲁木齐 830063
Design and study of special-shaped PDC cutter for hard sandstone strata of Shaximiao Formation
Yachao MA1(),Yifei LUO1,Zhun RONG2,Lei TAO3,Huichuan ZENG2,Dong JIANG2,Wenyuan ZHANG3
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Northeast Sichuan Gas Mine, Petro China Southwest Oil and Gasfield Company, Dazhou 635000, China
3.Engineering Technology Research Institute, CNPC Xibu Drilling Engineering Company Limited, Urumqi 830063, China
 全文: PDF(4238 KB)   HTML
摘要:

为解决川东沙溪庙组硬质砂岩地层PDC(polycrystalline diamond compact,聚晶金刚石复合片)钻头机械钻速低、磨损严重及钻井成本高的问题,对异形PDC齿在沙溪庙组硬质砂岩地层的破岩性能进行了综合研究。针对沙溪庙组砂岩地层高研磨性、硬塑性的特点,设计了斧形齿、圆弧曲面齿、斧形曲面齿和斜斧形齿等4种异形PDC齿,并建立了PDC齿切削与压入破岩结合的综合破岩比功评价方法。随后,利用破岩仿真模型,开展了异形PDC齿结构参数优化设计,并对优化后的异形PDC齿进行了破岩性能仿真分析。结果表明:齿刃角为130°的斧形齿和圆弧半径为25 mm的圆弧曲面齿的综合破岩比功最小。最终确定斧形曲面齿的圆弧半径为25 mm,齿刃角为130°,斜斧形齿的齿刃角为130°,倾斜角度为70°。4种异形PDC齿的综合破岩比功和齿刃温度均低于常规PDC齿,且综合破岩比功与磨损高度呈正相关。室内破岩试验结果表明,斧形齿与斧形曲面齿具有更优异的破岩性能。研究结果为沙溪庙组硬质砂岩地层的个性化PDC钻头设计提供了理论基础。

关键词: 沙溪庙组硬质砂岩异形PDC齿破岩比功破岩性能    
Abstract:

To address the issues of low mechanical drilling speed, severe wear, and high drilling costs of PDC (polycrystalline diamond compact) bits in the hard sandstone strata of the Shaximiao Formation in eastern Sichuan, a comprehensive study was conducted on the rock-breaking performance of special-shaped PDC cutters in the Shaximiao Formation hard sandstone strata. Aiming at the high abrasiveness and hard-plastic characteristics of the sandstone strata in Shaximiao Formation, four types of special-shaped PDC cutters were designed, including axe-shaped cutter, circular-arc curved-surface cutter, axe-shaped curved-surface cutter, and inclined axe-shaped cutter, and a comprehensive rock-breaking specific energy evaluation method combining PDC cutter breaking rock by cutting and pressing was established. Then, using the rock-breaking simulation model, the optimization design for structural parameters of these special-shaped PDC cutters was conducted, and the rock-breaking performance of the optimized PDC cutters was simulated and analyzed. The results showed that the axe-shaped cutter with a blade angle of 130° and the circular-arc curved-surface cutter with a arc radius of 25 mm had the lowest comprehensive rock-breaking specific energy. The final determined arc radius and blade angle of the axe-shaped curved-surface cutter was 25 mm and 130°, and the blade angle and inclination angle of the inclined axe-shaped cutter was 130° and 70°. Four types of special-shaped PDC cutters exhibited significantly lower comprehensive rock-breaking specific energy and blade temperature compared to conventional PDC cutters, with a clear positive correlation between comprehensive rock-breaking specific energy and wear height. The laboratory rock-breaking test results indicated that the axe-shaped cutter and the axe-shaped curved-surface cutter had superior rock-breaking performance. The research results provide a theoretical foundation for the customized design of PDC bits tailored for the hard sandstone strata of the Shaximiao Formation.

Key words: hard sandstone of Shaximiao Formation    special-shaped PDC cutter    rock-breaking specific energy    rock-breaking performance
收稿日期: 2024-07-24 出版日期: 2025-05-06
CLC:  TE 921  
基金资助: 国家自然科学基金青年科学基金资助项目(51904263);企事业单位委托科技资助项目(XNSJS2023-48)
作者简介: 马亚超(1986—),男,副教授,博士,从事PDC钻头动态磨损与布齿设计研究,E-mail: mayachao206207@126.com,https://orcid.org/0000-0001-8865-3521
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马亚超
罗逸非
荣准
陶垒
曾汇川
蒋东
张文远

引用本文:

马亚超,罗逸非,荣准,陶垒,曾汇川,蒋东,张文远. 沙溪庙组硬质砂岩地层异形PDC齿的设计与研究[J]. 工程设计学报, 2025, 32(2): 262-271.

Yachao MA,Yifei LUO,Zhun RONG,Lei TAO,Huichuan ZENG,Dong JIANG,Wenyuan ZHANG. Design and study of special-shaped PDC cutter for hard sandstone strata of Shaximiao Formation[J]. Chinese Journal of Engineering Design, 2025, 32(2): 262-271.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.160        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/262

图1  异形PDC齿
图2  PDC齿切削破岩仿真模型
图3  PDC齿压入破岩仿真模型
材料弹性模量/GPa

密度/

(g/cm3)

热导率/

[W/(m·℃)]

比热容/

[J/(kg·℃)]

热膨胀系数/(℃)-1泊松比内摩擦角/(°)黏聚力/MPa
PDC890.003.51543.07902.5×10-60.070
硬质合金579.0015.00100.02305.2×10-60.220
砂岩43.552.713.58005.2×10-70.2084927.43
表1  PDC齿与沙溪庙组砂岩的材料参数
仿真模型对象网格类型网格数量/个
切削破岩模型岩石四面体网格(C3D4T)226 836
PDC齿六面体网格(C3D8T)3 186
压入破岩模型岩石六面体网格(C3D8R)148 176
PDC齿1 716
表2  PDC齿破岩仿真模型的网格类型及数量
图4  齿刃角不同的斧形齿
图5  齿刃角不同的斧形齿的综合破岩比功对比
图6  圆弧半径不同的圆弧曲面齿
图7  圆弧半径不同的圆弧曲面齿的综合破岩比功对比
图8  斧形曲面齿的齿形结构
图9  斜斧形齿的齿形结构
图10  异形PDC齿破岩应力场
图11  PDC齿切削破岩比功对比
图12  PDC齿压入破岩受力对比
图13  PDC齿压入破岩比功对比
图14  PDC齿综合破岩比功对比
图15  PDC齿齿刃峰值温度对比
图16  0~3 mm磨损高度下PDC齿的综合破岩比功对比
图17  PDC齿综合破岩比功与磨损高度的拟合结果对比
图18  试验用PDC齿
图19  PDC齿切削试验装置
图20  PDC齿切削破岩产生的岩屑对比
齿形磨损量/mg总磨损量/mg磨损率变化趋势
第1次第2次
常规齿0.91.12.0增大
斧形齿2.11.33.4减小
圆弧曲面齿32.21.233.4减小
斧形曲面齿5.01.86.8减小
斜斧形齿39.52.341.8减小
表3  PDC齿的磨损量对比
图21  PDC齿的平均切削力对比
1 郑家伟. 国外金刚石钻头的新进展[J]. 石油机械, 2016, 44(8): 31-36.
ZHENG J W. New development in foreign diamond drill bit[J]. China Petroleum Machinery, 2016, 44(8): 31-36.
2 SCOTT D. A bit of history: overcoming early setbacks, PDC bits now drill 90%-plus of worldwide footage[J]. Drilling Contractor, 2015, 71(4): 60-68.
3 思娜, 王敏生, 李婧, 等. PDC钻头新技术及发展趋势分析[J]. 石油矿场机械, 2018, 47(2): 1-7. doi:10.3969/j.issn.1001-3482.2018.02.001
SI N, WANG M S, LI J, et al. Abroad PDC bit technology's research trends and development thinking[J]. Oil Field Equipment, 2018, 47(2): 1-7.
doi: 10.3969/j.issn.1001-3482.2018.02.001
4 马亚超, 陶垒, 荣准. PDC钻头布齿技术研究综述[J]. 工程设计学报, 2023, 30(1): 1-12.
MA Y C, TAO L, RONG Z. Review of PDC bit cutter arrangement technology[J]. Chinese Journal of Engineering Design, 2023, 30(1): 1-12.
5 DURRAND C J, SKEEM M R, CROCKETT R B, et al. Super-hard, thick, shaped PDC cutters for hard rock drilling: development and test results[C]//Thirty-fifth Workshop on Geothermal Reservoir Engineering. Stanford, California, Feb. 1-3, 2010.
6 ZHU X H, LUO Y X, LIU W J. The rock breaking and ROP increase mechanisms for single-tooth torsional impact cutting using DEM[J]. Petroleum Science, 2019, 16(5): 1134-1147.
7 贾佳, 夏忠跃, 冯雷. 临兴区块致密气钻井提效技术[J]. 天然气技术与经济, 2020, 14(5): 52-57.
JIA J, XIA Z Y, FENG L. Drilling technologies for tight gas and their application to Linxing block[J]. Natural Gas Technology and Economy, 2020, 14(5): 52-57.
8 许利辉, 毕泗义. 国外PDC切削齿研究进展[J]. 石油机械, 2017, 45(2): 35-40.
XU L H, BI S Y. Overseas researches on PDC cutters[J]. China Petroleum Machinery, 2017, 45(2): 35-40.
9 吴泽兵, 席凯凯, 王杰, 等. 可伸缩式PDC-孕镶金刚石耦合仿生智能钻头的破岩仿真[J]. 石油钻采工艺, 2021, 43(4): 474-482.
WU Z B, XI K K, WANG J, et al. Rock breaking simulation of flexible PDC-impregnated diamond coupling bionic intelligent bit[J]. Oil Drilling & Production Technology, 2021, 43(4): 474-482.
10 杨迎新, 高翔, 陈红, 等. PDC钻头岩石可钻性测定与分级新方法研究[J]. 地下空间与工程学报, 2019, 15(3): 811-819.
YANG Y X, GAO X, CHEN H, et al. A new method for measuring and grading of PDC bit rock drillability[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 811-819.
11 邹洁, 冉小丰, 杨志强, 等. 影响PDC钻头应用性能的因素分析[J]. 南方农机, 2019, 50(15): 29, 33.
ZOU J, RAN X F, YANG Z Q, et al. Analysis of factors affecting the application performance of PDC drill bits[J]. China Southern Agricultural Machinery, 2019, 50(15): 29, 33.
12 朱丽华. Smith钻头公司新型AxeBlade脊状金刚石钻头[J]. 钻采工艺, 2016, 39(3): 94.
ZHU L H. Smith Bit Company's new AxeBlade ridge diamond drill bit[J]. Drilling & Production Technology, 2016, 39(3): 94.
13 DUEY R. Smith Bits, a Schlumberger Company: AxeBlade ridged diamond element bit[J]. E & P: A Hart Energy Publication, 2017, 90(5): 83.
14 冯松林, 樊松, 包立军, 等. 脊形金刚石元件钻头技术研究与应用[J]. 石油机械, 2018, 46(4): 17-23.
FENG S L, FAN S, BAO L J, et al. Research and application of ridged diamond element bit[J]. China Petroleum Machinery, 2018, 46(4): 17-23.
15 谢晗, 况雨春, 秦超. 非平面PDC切削齿破岩有限元仿真及试验[J]. 石油钻探技术, 2019, 47(5): 69-73.
XIE H, KUANG Y C, QIN C. The finite element simulation and test of rock breaking by non-planar PDC cutting cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73.
16 彭齐, 周英操, 周波, 等. 凸脊型非平面齿PDC钻头的研制与现场试验[J]. 石油钻探技术, 2020, 48(2): 49-55.
PENG Q, ZHOU Y C, ZHOU B, et al. Development and field test of a non-planar cutter PDC bit with convex ridges[J]. Petroleum Drilling Techniques, 2020, 48(2): 49-55.
17 张涛, 董宏伟, 赵峰, 等. 非平面齿PDC钻头在福山油田砂砾岩地层的应用[J]. 石油工业技术监督, 2021, 37(3): 52-54, 59.
ZHANG T, DONG H W, ZHAO F, et al. Application of PDC bit with non-planar cutters in glutenite formation of Fushan Oilfield[J]. Technology Supervision in Petroleum Industry, 2021, 37(3): 52-54, 59.
18 屈季辉. 防气窜固井技术应用[J]. 石化技术, 2018, 25(1): 12.
QU J H. Application of gas channeling prevention cementing technology[J]. Petrochemical Industry Technology, 2018, 25(1): 12.
19 费康, 张建伟. Abaqus在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010.
FEI K, ZHANG J W. Application of Abaqus in geotechnical engineering[M]. Beijing: China Water & Power Press, 2010.
20 李琴, 傅文韬, 黄志强, 等. 硬地层单牙轮-PDC钻扩联合钻头破岩特性[J]. 中国机械工程, 2019, 30(22): 2683-2690.
LI Q, FU W T, HUANG Z Q, et al. Rock breaking characteristics of a single cone-PDC combined drill bit in hard formation[J]. China Mechanical Engineering, 2019, 30(22): 2683-2690.
[1] 赫文豪,李欣龙,张润青,刘利,史怀忠,黄中伟,熊超,陈振良,吴洪志. 基于岩屑形貌分形特征的PDC齿破岩比功评估模型[J]. 工程设计学报, 2025, 32(1): 23-31.