Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (2): 252-261    DOI: 10.3785/j.issn.1006-754X.2025.04.158
优化设计     
嵌套余弦函数型多轴柔性铰链的设计与分析
徐美娟(),汪启亮(),洪永烽,龙益平,刘通,郭彬
江西理工大学 机电工程学院,江西 赣州 341000
Design and analysis of nested cosine function type multi-axis flexure hinge
Meijuan XU(),Qiliang WANG(),Yongfeng HONG,Yiping LONG,Tong LIU,Bin GUO
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
 全文: PDF(3966 KB)   HTML
摘要:

现有柔性铰链的缺口形状主要局限于圆锥曲线及其组合,且在应对复杂载荷和大角度运动时容易因应力过大而失效。为此,设计了一种新型的嵌套余弦函数型多轴柔性铰链。首先,基于有限梁柔度矩阵建模(finite beam compliance matrix modeling, FBMM)法构建了新型柔性铰链的柔度和精度模型,并与ANSYS Workbench软件的有限元仿真结果对比,发现柔度和精度的相对误差分别小于4.89%和4.97%,验证了理论模型的有效性。然后,讨论了结构参数对新型柔性铰链柔度、精度和柔度精度比的影响,并与椭圆型、圆弧型、正弦型多轴柔性铰链进行了比较。结果表明,所设计的柔性铰链具有柔度大、应力低的特点。最后,通过搭建柔性铰链实验平台来测试其变形情况,实测结果与理论结果的相对误差小于8%,进一步验证了柔度模型的有效性。嵌套余弦函数型多轴柔性铰链可为大行程柔顺精密定位平台的设计提供参考。

关键词: 多轴柔性铰链有限梁柔度矩阵建模柔度应力有限元仿真    
Abstract:

The notch shapes of existing flexure hinges are primarily limited to conic sections and their combinations, which tend to fail due to excessive stress under complex loads and large angular movements. Therefore, a novel nested cosine function type multi-axis flexure hinge is designed. Firstly, based on the finite beam compliance matrix modeling (FBMM) method, the compliance and precision models of the novel flexure hinge were established. Compared with the finite element simulation results of ANSYS Workbench software, the relative errors of compliance and precision were less than 4.89% and 4.97% respectively, which verified the validity of theoretical models. Then, the effects of structural parameters on the compliance, precision and compliance-precision ratio of the novel flexure hinge were discussed, and compared with elliptic type, arc type and sinusoidal type multi-axis flexure hinges. The results indicated that the designed flexure hinge had the characteristics of high flexibility and low stress. Finally, an experimental platform for flexure hinge was built to test the deformation. The relative error between the measured results and the theoretical results was less than 8%, which further verified the validity of the compliance model. The nested cosine function type multi-axis flexure hinge can provide reference for the design of large-stroke compliant precision positioning stages.

Key words: multi-axis flexure hinge    finite beam compliance matrix modeling    compliance    stress    finite element simulation
收稿日期: 2024-07-15 出版日期: 2025-05-06
CLC:  TH 112  
基金资助: 国家自然科学基金资助项目(51905239);江西省教育厅科学技术研究项目(GJJ160656);江西省自然科学基金资助项目(20181BAB216019)
通讯作者: 汪启亮     E-mail: 2517608138@qq.com;wangqiliang@jxust.edu.cn
作者简介: 徐美娟(1997—),女,硕士生,从事柔顺机构研究,E-mail: 2517608138@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐美娟
汪启亮
洪永烽
龙益平
刘通
郭彬

引用本文:

徐美娟,汪启亮,洪永烽,龙益平,刘通,郭彬. 嵌套余弦函数型多轴柔性铰链的设计与分析[J]. 工程设计学报, 2025, 32(2): 252-261.

Meijuan XU,Qiliang WANG,Yongfeng HONG,Yiping LONG,Tong LIU,Bin GUO. Design and analysis of nested cosine function type multi-axis flexure hinge[J]. Chinese Journal of Engineering Design, 2025, 32(2): 252-261.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.158        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I2/252

图1  嵌套余弦函数型多轴柔性铰链结构示意
图2  嵌套余弦函数型多轴柔性铰链受力示意
图3  嵌套余弦函数型多轴柔性铰链旋转中心变形示意
图4  嵌套余弦函数型多轴柔性铰链有限元模型
组别lat
1102.01.0
2102.51.0
3122.01.0
4102.00.8
表1  4组柔性铰链尺寸参数 (mm)
组别对比项

Cx1, Fx /

(m·N-1)

Cy1, Mz /N-1Cθz, Mz /(N-1·m-1)

Cy1, Fy /

(m·N-1)

Cθz, Fy /N-1

Cx2, Fx /

(m·N-1)

Cy2, Mz /N-1

Cy2, Fy /

(m·N-1)

1理论值8.065×10-85.013×10-31.0022.671×10-55.013×10-34.037×10-84.894×10-43.259×10-6
仿真值8.326×10-85.116×10-31.0232.730×10-55.117×10-34.192×10-85.083×10-43.403×10-6
相对误差/%3.132.012.052.162.033.703.724.23
2理论值7.567×10-84.720×10-30.9432.499×10-54.720×10-33.788×10-84.326×10-42.846×10-6
仿真值7.904×10-84.832×10-30.9672.561×10-54.833×10-33.986×10-84.510×10-42.983×10-6
相对误差/%4.262.322.482.422.344.974.084.59
3理论值9.678×10-87.219×10-31.2024.604×10-57.219×10-34.844×10-87.048×10-45.575×10-6
仿真值9.912×10-87.322×10-31.2204.674×10-57.322×10-34.982×10-87.237×10-45.749×10-6
相对误差/%2.361.411.481.501.412.772.613.03
4理论值1.182×10-71.152×10-22.3026.082×10-51.152×10-25.918×10-81.056×10-36.859×10-6
仿真值1.222×10-71.170×10-22.3396.178×10-51.170×10-26.133×10-81.085×10-37.080×10-6
相对误差/%4.891.541.581.551.543.512.673.12
表2  柔性铰链柔度和精度的理论值与仿真值比较
图5  柔性铰链结构参数对柔度的影响
图6  柔性铰链结构参数对精度的影响
图7  柔性铰链结构参数对柔度精度比的影响
图8  不同柔性铰链的柔度、精度及柔度精度比对比
图9  不同柔性铰链的柔度应力比对比
图10  嵌套余弦函数型多轴柔性铰链试样结构尺寸
图11  柔性铰链实验平台
图12  点1'处位移和点2'处旋转角度的理论值与实测值对比
1 PAROS J M, WEISBORD L. How to design flexure hinges[J]. Machine Design, 1965, 37(27): 151-156.
2 LOBONTIU N, PAINE J S N, GARCIA E, et al. Design of symmetric conic-section flexure hinges based on closed-form compliance equations[J]. Mechanism and Machine Theory, 2002, 37(5): 477-498.
3 LI Q, PAN C Y, XU X J. Closed-form compliance equations for power-function-shaped flexure hinge based on unit-load method[J]. Precision Engineering, 2013, 37(1): 135-145.
4 GONG J L, ZHANG Y F, MOSTAFA K, et al. Accurate stiffness modeling method for flexure hinges with a complex contour curve[J]. Micro and Nanosystems, 2021, 13(1): 24-31.
5 WANG R Q, ZHOU X Q, ZHU Z W. Development of a novel sort of exponent-sine-shaped flexure hinges[J]. Review of Scientific Instruments, 2013, 84(9): 095008.
6 WANG R Q, ZHOU X Q, ZHU Z W, et al. Development of a novel type of hybrid non-symmetric flexure hinges[J]. Review of Scientific Instruments, 2015, 86(8): 085003.
7 LIN R Z, ZHANG X M, LONG X J, et al. Hybrid flexure hinges[J]. Review of Scientific Instruments, 2013, 84(8): 085004.
8 CHEN G M, LIU X Y, DU Y L. Elliptical-arc-fillet flexure hinges: toward a generalized model for commonly used flexure hinges[J]. Journal of Mechanical Design, 2011, 133(8): 081002.
9 WEI H X, YANG J, WU F P, et al. Analytical modelling and experiments for hybrid multiaxis flexure hinges[J]. Precision Engineering, 2022, 76: 294-304.
10 WEI H X, TIAN Y L, ZHAO Y J, et al. Two-axis flexure hinges with variable elliptical transverse cross-sections[J]. Mechanism and Machine Theory, 2023, 181: 105183.
11 LI L J, ZHANG D, GUO S, et al. Design, modeling, and analysis of hybrid flexure hinges[J]. Mechanism and Machine Theory, 2019, 131: 300-316.
12 李立建, 姚建涛, 郭飞, 等. 混合型柔性铰链构型设计与柔度建模[J]. 机械工程学报, 2022, 58(21): 78-91. doi:10.3901/jme.2022.21.078
LI L J, YAO J T, GUO F, et al. Configuration design and compliance modeling of hybrid flexure hinges[J]. Journal of Mechanical Engineering, 2022, 58(21): 78-91.
doi: 10.3901/jme.2022.21.078
13 LI L J, ZHANG D, QU H B, et al. Generalized model and configuration design of multiple-axis flexure hinges[J]. Mechanism and Machine Theory, 2022, 169: 104677.
14 王传礼, 李成, 何涛, 等. 椭圆导角混合柔性铰链的设计计算与性能分析[J]. 中国机械工程, 2021, 32(9): 1017-1026.
WANG C L, LI C, HE T, et al. Design calculation and performance analysis of elliptical corner-filleted hybrid flexure hinges[J]. China Mechanical Engineering, 2021, 32(9): 1017-1026.
15 WANG Q L, LONG Y P, WEI J M, et al. Theoretical, numerical, and experimental investigation on the compliance and natural frequency of sinusoidal flexure hinges[J]. Engineering Reports, 2023, 5(7): e12626.
16 WANG Q L, HONG Y F, XU M J, et al. Theoretical, numerical, and experimental investigation on second-order Bezier curve flexure hinges[J]. Engineering Research Express, 2024, 6(1): 015078.
17 杨春辉, 刘平安. 圆弧型柔性球铰柔度设计计算[J]. 工程设计学报, 2014, 21(4): 389-392, 404. doi:10.3785/j.issn.1006-754X.2014.04.014
YANG C H, LIU P A. Design and calculation of compliance of arc flexure spherical hinge[J]. Chinese Journal of Engineering Design, 2014, 21(4): 389-392, 404.
doi: 10.3785/j.issn.1006-754X.2014.04.014
18 LI J B, ZHAO Y, WU Q W, et al. Design and analysis of the power-trigonometric function-shaped flexure hinges[J]. Review of Scientific Instruments, 2023, 94(9): 095105.
19 谢超, 陈云壮, 石光楠, 等. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
XIE C, CHEN Y Z, SHI G N, et al. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chinese Journal of Engineering Design, 2023, 30(5): 626-633.
20 LING M X, YUAN L, LAI J H, et al. Compliance and precision modeling of general notch flexure hinges using a discrete-beam transfer matrix[J]. Precision Engineering, 2023, 82: 233-250.
21 左皓琛, 梁松, 闫明. 不同参数对交叉簧片型柔性铰链刚度特性的影响[J]. 机电工程, 2023, 40(11): 1727-1734.
ZUO H C, LIANG S, YAN M. Influence of different parameters on stiffness characteristics of cross-spring flexure pivots[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(11): 1727-1734.
[1] 杜健,祝锡晶,李婧. 基于压电陶瓷驱动的二维精密定位平台设计及分析[J]. 工程设计学报, 2025, 32(2): 199-207.
[2] 陈振,陈能鹏,冉庆杰,王乔木,魏超成,鞠浩文. 耦合焊接残余应力的横波可控震源振动器平板疲劳寿命预测[J]. 工程设计学报, 2025, 32(1): 102-111.
[3] 徐智皓,陆晓伟,谢雨欣,赖磊捷. 音圈电机驱动的三自由度大行程柔性偏摆台设计与分析[J]. 工程设计学报, 2025, 32(1): 82-91.
[4] 李军星,高锐,邱明,李燕科,刘静涛,刘志卫. 考虑动态时变载荷的滚动轴承可靠性寿命评估方法[J]. 工程设计学报, 2024, 31(4): 420-427.
[5] 余瑞明,马云艳,池伟,沈宇忠. 全金属硬密封双向零泄漏三偏心蝶阀设计与分析[J]. 工程设计学报, 2024, 31(4): 511-520.
[6] 杨宇,杨昌群,赵勃. 基于超声导波的螺栓轴向应力测量方法[J]. 工程设计学报, 2024, 31(3): 280-291.
[7] 李军星,宁世杰,邱明. 滚动轴承径向游隙可靠性设计[J]. 工程设计学报, 2023, 30(6): 738-745.
[8] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[9] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[10] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[11] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[12] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[13] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[14] 陈一帆,吴倩,蒋凌,华亮. 基于声信号识别的焊后残余应力处理质量检测方法[J]. 工程设计学报, 2022, 29(3): 272-278.
[15] 李阳, 聂羽飞. 钠燃烧试验厂房隔热密封门的设计与分析[J]. 工程设计学报, 2022, 29(1): 115-122.