1 |
RADAJ D. Design and analysis of fatigue resistant welded structures[M]. Cambridge: Abington Publishing, 1990.
|
2 |
LIU X M, GAO Y P, WEI Z G, et al. Welding defects of SUPER304H steel and their countermeasures[C]// Proceedings of the 2015 International Workshop on Materials, Manufacturing Technology, Electronics and Information Science. Wuhan, Oct. 9-11, 2015.
|
3 |
吕加鹏. 铣刨机升降支腿27SiMn合金钢焊接工艺研究[D]. 长沙: 湖南大学, 2017. LÜ J P. Study on 27SiMn alloy steel welding technology of the milling machine's lifting leg[D]. Changsha: Hunan University, 2017.
|
4 |
王龙. 波形腹板H形钢梁的焊接残余应力对性能的影响[D]. 重庆: 重庆交通大学, 2017. doi:10.25103/jestr.111.20 WANG L. Influence of welding residual stress on properties of H-shaped steel beams with corrugated webs[D]. Chongqing: Chongqing Jiaotong University, 2017.
doi: 10.25103/jestr.111.20
|
5 |
曹现雷, 沈浩, 徐勇, 等. Q800高强钢焊接工字形截面残余应力试验分析[J]. 焊接学报, 2018, 39(3): 36-41. CAO X L, SHEN H, XU Y, et al. Experimental investigation of residual stress in welded Q800 high strength steel I-shaped cross-section[J]. Transactions of the China Welding Institution, 2018, 39(3): 36-41.
|
6 |
FU G M, LOURENÇO M I, DUAN M L, et al. Influence of the welding sequence on residual stress and distortion of fillet welded structures[J]. Marine Structures, 2016, 46: 30-55.
|
7 |
李琴, 王于豪, 丁雅萍, 等. 焊接工艺参数对Q345钢平板焊接残余应力的影响[J]. 材料科学与工艺, 2020, 28(6): 80-87. LI Q, WANG Y H, DING Y P, et al. Effect of welding parameters on residual stress of Q345 steel plate welding[J]. Materials Science and Technology, 2020, 28(6): 80-87.
|
8 |
RYBICKI E F, STONESIFER R B. Computation of residual stresses due to multipass welds in piping systems[J]. Journal of Pressure Vessel Technology, 1979, 101(2): 149-154.
|
9 |
魏崇一, 姜文光. 循环载荷下T型接头焊接残余应力的释放研究[J]. 热加工工艺, 2021, 50(7): 121-126. WEI C Y, JIANG W G. Study of T-joint welding residual stress relaxation under cyclic loading[J]. Hot Working Technology, 2021, 50(7): 121-126.
|
10 |
王文静, 白锦仪, 刘伟. 基于热点应力法的焊接结构疲劳评估[J]. 北京交通大学学报, 2017, 41(6): 82-87. WANG W J, BAI J Y, LIU W. Fatigue assessment of weld structure based on the hot spot stress method[J]. Journal of Beijing Jiaotong University, 2017, 41(6): 82-87.
|
11 |
GRBOVIĆ A, SEDMAK A, KASTRATOVIĆ G, et al. Effect of laser beam welded reinforcement on integral skin panel fatigue life[J]. Engineering Failure Analysis, 2019, 101: 383-393.
|
12 |
黄庆文, 吴柏生, 廖德林. 基于修正P—S—N曲线的柔轮寿命预测[J]. 机械传动, 2021, 45(11): 161-165. HUANG Q W, WU B S, LIAO D L. Life prediction of flexspline based on the modified P-S-N curve[J]. Journal of Mechanical Transmission, 2021, 45(11): 161-165.
|
13 |
范文学, 陈芙蓉, 解瑞军, 等. 基于不同S—N曲线的横向十字焊接接头疲劳寿命预测[J]. 焊接学报, 2013, 34(11): 69-72, 116. FAN W X, CHEN F R, XIE R J, et al. Fatigue life prediction of transverse cross welded joint based on different S-N curve[J]. Transactions of the China Welding Institution, 2013, 34(11): 69-72, 116.
|
14 |
SUDRET B, GUÉDÉ Z, HORNET P, et al. Probabilistic assessment of fatigue life including statistical uncertainties in the S-N curve[C]//Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology. Prague, Aug. 17-22, 2003.
|
15 |
ENGESVIK K M, MOAN T. Probabilistic analysis of the uncertainty in the fatigue capacity of welded joints[J]. Engineering Fracture Mechanics, 1983, 18(4): 743-762.
|
16 |
高会英, 张小强, 黄洪钟, 等. 考虑S—N曲线不确定性的概率疲劳寿命预测[J]. 中国科学: 物理学 力学 天文学, 2018, 48(1): 014605. doi:10.1360/sspma2016-00543 GAO H Y, ZHANG X Q, HUANG H Z, et al. Probabilistic fatigue life prediction considering the uncertainty of S-N curve[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(1): 014605.
doi: 10.1360/sspma2016-00543
|
17 |
魏国前, 郭子贤, 闫梦煜, 等. 基于Pavlou方法的焊接结构疲劳寿命预测[J]. 焊接学报, 2023, 44(9): 16-23, 129-130. WEI G Q, GUO Z X, YAN M Y, et al. Pavlou approach based fatigue life prediction for welded structures[J]. Transactions of the China Welding Institution, 2023, 44(9): 16-23, 129-130.
|
18 |
张红卫, 桂良进, 范子杰. 焊接残余应力对桥壳疲劳寿命的影响研究[J]. 机械工程学报, 2022, 58(24): 102-110. doi:10.3901/jme.2022.24.102 ZHANG H W, GUI L J, FAN Z J. Fatigue life prediction and experiment of an axle housing considering welding residual stresses[J]. Journal of Mechanical Engineering, 2022, 58(24): 102-110.
doi: 10.3901/jme.2022.24.102
|
19 |
GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305.
|
20 |
周恒夫. 铝合金焊件的几何形状对焊接变形及残余应力的影响[D]. 重庆: 重庆交通大学, 2018. ZHOU H F. Influence of geometry of aluminum alloy weldment on welding deformation and residual stress[D]. Chongqing: Chongqing Jiaotong University, 2018.
|
21 |
康泽毓. 基于焊接残余应力耦合作用的振动器平板损伤分析与合理焊接参数研究[D]. 成都: 西南石油大学, 2018. KANG Z Y. Damage analysis and reasonable welding parameters of vibrator plate based on welding residual stress coupling[D]. Chengdu: Southwest Petroleum University, 2018.
|
22 |
兆文忠, 李向伟, 董平沙, 等. 焊接结构抗疲劳设计理论与方法[M]. 2版. 北京: 机械工业出版社, 2021. ZHAO W Z, LI X W, DONG P S, et al. Theory and method of fatigue resistance design of welded structures[M]. 2nd ed. Beijing: China Machine Press, 2021.
|
23 |
LI C L, HAN Q, LIU Y J, et al. Investigation of wave propagation in double cylindrical rods considering the effect of prestress[J]. Journal of Sound and Vibration, 2015, 353: 164-180.
|
24 |
ASHWEAR N, ERIKSSON A. Natural frequencies describe the pre-stress in tensegrity structures[J]. Computers & Structures, 2014, 138: 162-171.
|
25 |
陈炉云, 郭永晋, 易宏. 含焊接残余应力的结构模型参数修正研究[J]. 振动与冲击, 2020, 39(8): 245-249. CHEN L Y, GUO Y J, YI H. Model parameter updating study consideration of welding residual stress distribution[J]. Journal of Vibration and Shock, 2020, 39(8): 245-249.
|
26 |
魏崇一. T型接头焊接残余应力分析和释放研究[D]. 秦皇岛: 燕山大学, 2020. WEI C Y. Analysis and relaxation study of residual stress in T-joint welding[D]. Qinhuangdao: Yanshan University, 2020.
|
27 |
孙训方, 方孝淑, 关来泰. 材料力学(Ⅰ)[M]. 6版. 北京: 高等教育出版社, 2019. SUN X F, FANG X S, GUAN L T. Mechanics of materials(Ⅰ)[M]. 6th ed. Beijing: Higher Education Press, 2019.
|
28 |
赵少汴. 抗疲劳设计手册[M]. 2版. 北京: 机械工业出版社, 2015. ZHANG S B. Fatigue design manual[M]. 2nd ed. Beijing: China Machine Press, 2015.
|
29 |
邵永波, Seng-Tjhen LIE. K节点应力集中系数的试验和数值研究方法[J]. 工程力学, 2006, 23(): 79-85. doi:10.1016/b978-008044637-0/50166-9 SHAO Y B, LIE S T. Experimental and numerical studies of the stress concentration factor (SCF) of tubular K-joints[J]. Engineering Mechanics, 2006, 23(): 79-85.
doi: 10.1016/b978-008044637-0/50166-9
|
30 |
赵永翔, 高庆, 王金诺. 估计三种常用应力-寿命模型概率设计S—N曲线的统一方法[J]. 核动力工程, 2001, 22(1): 42-52. ZHAO Y X, GAO Q, WANG J N. Unified approach for estimating the probabilistic design S-N curves of three commonly used fatigue stress-life models[J]. Nuclear Power Engineering, 2001, 22(1): 42-52.
|
31 |
CHEN Z, LI T, XUE X W, et al. Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Engineering Failure Analysis, 2021, 127: 105357.
|
32 |
徐可君, 肖阳, 秦海勤, 等. 基于循环应变特征的疲劳-蠕变寿命预测方法[J]. 航空学报, 2021, 42(5): 524109. XU K J, XIAO Y, QIN H Q, et al. Fatigue-creep life prediction based on cyclic strain characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524109.
|