Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (1): 102-111    DOI: 10.3785/j.issn.1006-754X.2025.04.145
可靠性与保质设计     
耦合焊接残余应力的横波可控震源振动器平板疲劳寿命预测
陈振1,2,3(),陈能鹏2(),冉庆杰2,王乔木2,魏超成2,鞠浩文2
1.页岩气评价与开采四川省重点实验室,四川 成都 610500
2.西南石油大学 机电工程学院,四川 成都 610500
3.石油天然气装备技术四川省科技资源共享服务平台,四川 成都 610500
Fatigue life prediction of sheer wave vibroseis vibrator baseplate coupled with welding residual stress
Zhen CHEN1,2,3(),Nengpeng CHEN2(),Qingjie RAN2,Qiaomu WANG2,Chaocheng WEI2,Haowen JU2
1.Sichuan Key Laboratory of Shale Gas Evaluation and Exploitation, Chengdu 610500, China
2.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
3.Petroleum and Natural Gas Equipment Technology, Sichuan Province Science and Technology Resource Sharing Service Platform, Chengdu 610500, China
 全文: PDF(3889 KB)   HTML
摘要:

振动器平板是耦合横波可控震源振动器与大地的关键媒介,而平板齿与平板的焊接部位在地震波激发工况下受力复杂,易发生疲劳失效,导致平板的使用寿命较低。针对传统结构疲劳寿命分析方法不考虑焊接残余应力的问题,采用等应变原理建立应力耦合准则,并对平板焊接焊缝危险部位开展焊接残余应力与工作载荷应力的耦合计算。随后,基于修正的SN曲线和耦合应力谱,采用Miner准则分析平板在焊接残余应力与工作载荷应力耦合作用下的疲劳寿命。结果表明:在焊接残余应力与工作载荷应力的耦合作用下,平板发生疲劳破坏的工作寿命为8.69 a,与实际8 a工作寿命的相对误差为8.6%。耦合焊接残余应力的振动器平板疲劳寿命预测方法具有较高的精度和稳定性,可为横波可控震源的维护与优化提供新的思路与方法。

关键词: 横波可控震源振动器平板焊接残余应力工作载荷应力应力耦合SN曲线    
Abstract:

Vibrator baseplate is the key medium for coupling shear wave vibroseis vibrator with earth, while the welding part of baseplate teeth and baseplate is prone to fatigue failure due to complex force under the condition of seismic wave excitation, which leads to low service life of baseplate. In view of the problem that the welding residual stress was not considered in the traditional structure fatigue life analysis method, the stress coupling criterion was established by using the equal strain principle, and the coupling calculation of welding residual stress and working load stress was carried out for the dangerous parts of the baseplate welding seam. Then, based on the modified S-N curve and coupled stress spectrum, the Miner criterion was used to analyze the fatigue life of baseplate under the coupling of welding residual stress and working load stress. The results showed that the fatigue failure life of the baseplate under the coupling of welding residual stress and working load stress was 8.69 a, and the relative error with the actual working life of 8 a was 8.6%. The fatigue life prediction method of vibrator baseplate coupled with welding residual stress has high accuracy and stability, which can provide a new idea and method for the maintenance and optimization of shear wave vibroseis.

Key words: sheer wave vibroseis    vibrator baseplate    welding residual stress    working load stress    stress coupling    S-N curve
收稿日期: 2024-05-27 出版日期: 2025-03-04
CLC:  TH 14  
基金资助: 四川省科技厅自然科学基金面上项目(2024NSFSC0094)
通讯作者: 陈能鹏     E-mail: 117976897@qq.com;2624134676@qq.com
作者简介: 陈 振(1985—),男,副教授,博士,从事机械装备结构可靠性及优化研究,E-mail: 117976897@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈振
陈能鹏
冉庆杰
王乔木
魏超成
鞠浩文

引用本文:

陈振,陈能鹏,冉庆杰,王乔木,魏超成,鞠浩文. 耦合焊接残余应力的横波可控震源振动器平板疲劳寿命预测[J]. 工程设计学报, 2025, 32(1): 102-111.

Zhen CHEN,Nengpeng CHEN,Qingjie RAN,Qiaomu WANG,Chaocheng WEI,Haowen JU. Fatigue life prediction of sheer wave vibroseis vibrator baseplate coupled with welding residual stress[J]. Chinese Journal of Engineering Design, 2025, 32(1): 102-111.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.145        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I1/102

图1  双椭球热源模型
参数数值
qf /(W·mm-3)44.0
qr /(W·mm-3)36.7
af /mm3
ar /mm6
b/mm4
c/mm2
Q/W4 004
表1  双椭球热源模型参数
图2  振动器平板与平板齿的焊接热源模型
图3  振动器平板焊接模型及其网格划分
焊层焊道数焊接电压/V焊接电流/A焊接速度/(mm/s)
打底焊1282318
填充焊1272356
盖面焊1262205
表2  焊接工艺参数
图4  振动器平板焊接残余应力场
图5  振动器平板沿焊接方向的焊接残余应力
图6  振动器平板-大地耦合模型网格划分
图7  振动器结构示意
图8  振动器平板所受载荷的变化曲线
图9  振动器平板载荷施加形式
图10  振动器平板打底焊缝处各危险节点的工作载荷应力
图11  振动器平板打底焊缝处XS3M节点的工作载荷应力
图12  振动器平板沿焊接方向的等效焊接残余应力
图13  振动器平板XS3M节点处耦合应力的变化曲线
参数数值来源
尺寸系数CD0.782《抗疲劳设计手册》[28]
表面状态系数β0.850表面加工工艺采用粗车加工
有效应力集中系数Kf1.740文献[29]中对应的材料应力集中系数确定方法
表3  振动器平板 S — N 曲线的修正参数
图14  修正前后振动器平板的 S — N 曲线
应力水平/MPa循环数/次损伤量
122.743.41×1052.93×10-6
112.536.43×1051.55×10-6
86.834.29×1062.33×10-7
82.276.36×1061.57×10-7
112.156.60×1051.52×10-6
表4  各级应力水平下振动器平板的疲劳损伤量
节点

应力循环数

NF/次

平均累积

损伤量D

疲劳寿命/a
XS1M7.53×1051.33×10-68.37
XS2M7.57×1051.32×10-68.41
XS3M7.82×1051.28×10-68.69
XS4M7.33×1051.37×10-68.14
XS5M7.40×1051.35×10-68.22
表5  振动器平板各危险节点的疲劳寿命
1 RADAJ D. Design and analysis of fatigue resistant welded structures[M]. Cambridge: Abington Publishing, 1990.
2 LIU X M, GAO Y P, WEI Z G, et al. Welding defects of SUPER304H steel and their countermeasures[C]// Proceedings of the 2015 International Workshop on Materials, Manufacturing Technology, Electronics and Information Science. Wuhan, Oct. 9-11, 2015.
3 吕加鹏. 铣刨机升降支腿27SiMn合金钢焊接工艺研究[D]. 长沙: 湖南大学, 2017.
LÜ J P. Study on 27SiMn alloy steel welding technology of the milling machine's lifting leg[D]. Changsha: Hunan University, 2017.
4 王龙. 波形腹板H形钢梁的焊接残余应力对性能的影响[D]. 重庆: 重庆交通大学, 2017. doi:10.25103/jestr.111.20
WANG L. Influence of welding residual stress on properties of H-shaped steel beams with corrugated webs[D]. Chongqing: Chongqing Jiaotong University, 2017.
doi: 10.25103/jestr.111.20
5 曹现雷, 沈浩, 徐勇, 等. Q800高强钢焊接工字形截面残余应力试验分析[J]. 焊接学报, 2018, 39(3): 36-41.
CAO X L, SHEN H, XU Y, et al. Experimental investigation of residual stress in welded Q800 high strength steel I-shaped cross-section[J]. Transactions of the China Welding Institution, 2018, 39(3): 36-41.
6 FU G M, LOURENÇO M I, DUAN M L, et al. Influence of the welding sequence on residual stress and distortion of fillet welded structures[J]. Marine Structures, 2016, 46: 30-55.
7 李琴, 王于豪, 丁雅萍, 等. 焊接工艺参数对Q345钢平板焊接残余应力的影响[J]. 材料科学与工艺, 2020, 28(6): 80-87.
LI Q, WANG Y H, DING Y P, et al. Effect of welding parameters on residual stress of Q345 steel plate welding[J]. Materials Science and Technology, 2020, 28(6): 80-87.
8 RYBICKI E F, STONESIFER R B. Computation of residual stresses due to multipass welds in piping systems[J]. Journal of Pressure Vessel Technology, 1979, 101(2): 149-154.
9 魏崇一, 姜文光. 循环载荷下T型接头焊接残余应力的释放研究[J]. 热加工工艺, 2021, 50(7): 121-126.
WEI C Y, JIANG W G. Study of T-joint welding residual stress relaxation under cyclic loading[J]. Hot Working Technology, 2021, 50(7): 121-126.
10 王文静, 白锦仪, 刘伟. 基于热点应力法的焊接结构疲劳评估[J]. 北京交通大学学报, 2017, 41(6): 82-87.
WANG W J, BAI J Y, LIU W. Fatigue assessment of weld structure based on the hot spot stress method[J]. Journal of Beijing Jiaotong University, 2017, 41(6): 82-87.
11 GRBOVIĆ A, SEDMAK A, KASTRATOVIĆ G, et al. Effect of laser beam welded reinforcement on integral skin panel fatigue life[J]. Engineering Failure Analysis, 2019, 101: 383-393.
12 黄庆文, 吴柏生, 廖德林. 基于修正PSN曲线的柔轮寿命预测[J]. 机械传动, 2021, 45(11): 161-165.
HUANG Q W, WU B S, LIAO D L. Life prediction of flexspline based on the modified P-S-N curve[J]. Journal of Mechanical Transmission, 2021, 45(11): 161-165.
13 范文学, 陈芙蓉, 解瑞军, 等. 基于不同SN曲线的横向十字焊接接头疲劳寿命预测[J]. 焊接学报, 2013, 34(11): 69-72, 116.
FAN W X, CHEN F R, XIE R J, et al. Fatigue life prediction of transverse cross welded joint based on different S-N curve[J]. Transactions of the China Welding Institution, 2013, 34(11): 69-72, 116.
14 SUDRET B, GUÉDÉ Z, HORNET P, et al. Probabilistic assessment of fatigue life including statistical uncertainties in the S-N curve[C]//Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology. Prague, Aug. 17-22, 2003.
15 ENGESVIK K M, MOAN T. Probabilistic analysis of the uncertainty in the fatigue capacity of welded joints[J]. Engineering Fracture Mechanics, 1983, 18(4): 743-762.
16 高会英, 张小强, 黄洪钟, 等. 考虑SN曲线不确定性的概率疲劳寿命预测[J]. 中国科学: 物理学 力学 天文学, 2018, 48(1): 014605. doi:10.1360/sspma2016-00543
GAO H Y, ZHANG X Q, HUANG H Z, et al. Probabilistic fatigue life prediction considering the uncertainty of S-N curve[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(1): 014605.
doi: 10.1360/sspma2016-00543
17 魏国前, 郭子贤, 闫梦煜, 等. 基于Pavlou方法的焊接结构疲劳寿命预测[J]. 焊接学报, 2023, 44(9): 16-23, 129-130.
WEI G Q, GUO Z X, YAN M Y, et al. Pavlou approach based fatigue life prediction for welded structures[J]. Transactions of the China Welding Institution, 2023, 44(9): 16-23, 129-130.
18 张红卫, 桂良进, 范子杰. 焊接残余应力对桥壳疲劳寿命的影响研究[J]. 机械工程学报, 2022, 58(24): 102-110. doi:10.3901/jme.2022.24.102
ZHANG H W, GUI L J, FAN Z J. Fatigue life prediction and experiment of an axle housing considering welding residual stresses[J]. Journal of Mechanical Engineering, 2022, 58(24): 102-110.
doi: 10.3901/jme.2022.24.102
19 GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305.
20 周恒夫. 铝合金焊件的几何形状对焊接变形及残余应力的影响[D]. 重庆: 重庆交通大学, 2018.
ZHOU H F. Influence of geometry of aluminum alloy weldment on welding deformation and residual stress[D]. Chongqing: Chongqing Jiaotong University, 2018.
21 康泽毓. 基于焊接残余应力耦合作用的振动器平板损伤分析与合理焊接参数研究[D]. 成都: 西南石油大学, 2018.
KANG Z Y. Damage analysis and reasonable welding parameters of vibrator plate based on welding residual stress coupling[D]. Chengdu: Southwest Petroleum University, 2018.
22 兆文忠, 李向伟, 董平沙, 等. 焊接结构抗疲劳设计理论与方法[M]. 2版. 北京: 机械工业出版社, 2021.
ZHAO W Z, LI X W, DONG P S, et al. Theory and method of fatigue resistance design of welded structures[M]. 2nd ed. Beijing: China Machine Press, 2021.
23 LI C L, HAN Q, LIU Y J, et al. Investigation of wave propagation in double cylindrical rods considering the effect of prestress[J]. Journal of Sound and Vibration, 2015, 353: 164-180.
24 ASHWEAR N, ERIKSSON A. Natural frequencies describe the pre-stress in tensegrity structures[J]. Computers & Structures, 2014, 138: 162-171.
25 陈炉云, 郭永晋, 易宏. 含焊接残余应力的结构模型参数修正研究[J]. 振动与冲击, 2020, 39(8): 245-249.
CHEN L Y, GUO Y J, YI H. Model parameter updating study consideration of welding residual stress distribution[J]. Journal of Vibration and Shock, 2020, 39(8): 245-249.
26 魏崇一. T型接头焊接残余应力分析和释放研究[D]. 秦皇岛: 燕山大学, 2020.
WEI C Y. Analysis and relaxation study of residual stress in T-joint welding[D]. Qinhuangdao: Yanshan University, 2020.
27 孙训方, 方孝淑, 关来泰. 材料力学(Ⅰ)[M]. 6版. 北京: 高等教育出版社, 2019.
SUN X F, FANG X S, GUAN L T. Mechanics of materials(Ⅰ)[M]. 6th ed. Beijing: Higher Education Press, 2019.
28 赵少汴. 抗疲劳设计手册[M]. 2版. 北京: 机械工业出版社, 2015.
ZHANG S B. Fatigue design manual[M]. 2nd ed. Beijing: China Machine Press, 2015.
29 邵永波, Seng-Tjhen LIE. K节点应力集中系数的试验和数值研究方法[J]. 工程力学, 2006, 23(): 79-85. doi:10.1016/b978-008044637-0/50166-9
SHAO Y B, LIE S T. Experimental and numerical studies of the stress concentration factor (SCF) of tubular K-joints[J]. Engineering Mechanics, 2006, 23(): 79-85.
doi: 10.1016/b978-008044637-0/50166-9
30 赵永翔, 高庆, 王金诺. 估计三种常用应力-寿命模型概率设计SN曲线的统一方法[J]. 核动力工程, 2001, 22(1): 42-52.
ZHAO Y X, GAO Q, WANG J N. Unified approach for estimating the probabilistic design S-N curves of three commonly used fatigue stress-life models[J]. Nuclear Power Engineering, 2001, 22(1): 42-52.
31 CHEN Z, LI T, XUE X W, et al. Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Engineering Failure Analysis, 2021, 127: 105357.
32 徐可君, 肖阳, 秦海勤, 等. 基于循环应变特征的疲劳-蠕变寿命预测方法[J]. 航空学报, 2021, 42(5): 524109.
XU K J, XIAO Y, QIN H Q, et al. Fatigue-creep life prediction based on cyclic strain characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524109.
[1] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[2] 陈振, 周阳, 敬爽, 黄志强, 陈言. 震源振动器平板损伤机理及其疲劳寿命预测研究[J]. 工程设计学报, 2019, 26(6): 658-665.
[3] 黄志强, 彭珣, 李刚. 可控震源振动器平板多频响应分析[J]. 工程设计学报, 2017, 24(6): 648-654.