Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (5): 623-633    DOI: 10.3785/j.issn.1006-754X.2024.04.113
优化设计     
全通道内置阀式磁流变阻尼器的设计及性能分析
方冰(),胡国良(),梅鑫,喻理梵
华东交通大学 机电与车辆工程学院,江西 南昌 330013
Design and performance analysis of full fluid channel magnetorheological damper with built-in valve
Bing FANG(),Guoliang HU(),Xin MEI,Lifan YU
School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(5966 KB)   HTML
摘要:

针对磁流变假肢中磁流变阻尼器体积大、输出阻尼力较小的问题,设计了一种全通道内置阀式磁流变阻尼器。首先,通过布置导磁楔形环和隔磁环,引导磁力线穿过全部液流通道,并进行了阻尼器磁路分析和输出阻尼力数学模型的推导;其次,利用ANSYS软件进行了阻尼器电磁场仿真;再次,采用多目标遗传算法优化阻尼器的结构参数,并仿真对比了优化前后阻尼器的平均磁感应强度和输出阻尼力;最后,加工了结构参数优化前后的阻尼器样机,并对其进行了动力学性能测试与分析。结果表明:优化后阻尼器活塞头的体积减小了24.4%,最大输出阻尼力提高了24 N;当电流为2 A时,优化前最大输出阻尼力仿真值为295.38 N,测试值为309.76 N,误差为4.6%;优化后最大输出阻尼力仿真值为307.77 N,测试值为333.76 N,误差为7.6%。所设计的全通道内置阀式磁流变阻尼器体积较小,输出阻尼力较大,液流通道的空间利用率较高。研究结果可为磁流变假肢中磁流变阻尼器的设计提供参考。

关键词: 磁流变阻尼器全通道内置阀式多目标优化    
Abstract:

Aiming at the problems of large volume and small output damping force of magnetorheological damper (MRD) in MR prosthesis, a full fluid channel MRD with built-in valve was designed. Firstly, the magnetic flux lines were guided through all fluid flow channels by arranging arranged with magnetically conductive wedge rings and a magnetically separating ring, and the magnetic circuit analysis and derivation of mathematical model of output damping force were carried out. Secondly, the electromagnetic field of the damper was simulated by ANSYS software. Thirdly, the structural parameters of the MRD were optimized by using the multi-objective genetic algorithm, and the average magnetic flux density and the output damping force of the damper before and after optimization were simulated and compared. Finally, the damper prototypes were machined before and after the optimization of structural parameters, and the dynamic performances were tested and analyzed. The results showed that the volume of the piston head was reduced by 24.4% and the maximum output damping force was increased by 24 N after optimization. When the current was 2 A, the simulated value of maximum output damping force before optimization was 295.38 N, and the experimental value was 309.76 N, with an error of 4.6%; the simulated value of maximum output damping force after optimization was 307.77 N, and the experimental value was 333.76 N, with an error of 7.6%. The designed full fluid channel MRD with built-in valve had smaller volume, larger output damping force and higher utilization rate of fluid flow channel space. The research results can provide reference for the design of MRD in MR prosthesis.

Key words: magnetorheological damper    full fluid channel    built-in valve    multi-objective optimization
收稿日期: 2024-02-19 出版日期: 2024-10-30
CLC:  TH 137.5  
基金资助: 国家自然科学基金资助项目(52165004);江西省国际科技合作重点项目(20232BBH80010);江西省教育厅科学技术研究项目(GJJ210629)
通讯作者: 胡国良     E-mail: 2022038080200011@ecjtu.edu.cn;glhu@ecjtu.edu.cn
作者简介: 方 冰(2000—),男,硕士生,从事磁流变阻尼器结构优化设计研究,E-mail: 2022038080200011@ecjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
方冰
胡国良
梅鑫
喻理梵

引用本文:

方冰,胡国良,梅鑫,喻理梵. 全通道内置阀式磁流变阻尼器的设计及性能分析[J]. 工程设计学报, 2024, 31(5): 623-633.

Bing FANG,Guoliang HU,Xin MEI,Lifan YU. Design and performance analysis of full fluid channel magnetorheological damper with built-in valve[J]. Chinese Journal of Engineering Design, 2024, 31(5): 623-633.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.04.113        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I5/623

图1  全通道内置阀式磁流变阻尼器结构1—左端盖;2—左活塞杆;3—缸体;4—活塞头;5—右活塞杆;6—右端盖;7—右吊耳。
图2  磁流变阻尼器活塞头结构1—左压板;2—线圈绕线架;3—内置导磁缸体;4—左楔形环;5—隔磁环;6—励磁线圈;7—右楔形环;8—右压板。
图3  磁流变液的磁流变特性曲线
图4  全通道内置阀式磁流变阻尼器磁路示意图
尺寸参数数值
绕线槽深度t6.5
绕线槽小径tb8.0
绕线槽轴向长度w16.0
楔形环厚度h13.0
内置导磁缸体厚度h23.0
缸体厚度h33.0
阻尼间隙g1.0
活塞杆小半径r03.0
活塞杆大半径r16.0
液流通道处小半径r217.5
活塞头半径r321.5
缸体外径r424.5
活塞头侧翼磁轭轴向长度L15.0
楔形环轴向长度L212.0
内置导磁缸体轴向长度L326.0
活塞头长度L430.0
缸体长度Ld108.0
表1  磁流变阻尼器尺寸参数 (mm)
图5  磁流变阻尼器活塞头液流通道分布示意图
图6  磁流变阻尼器有限元模型1—左压板;2—活塞杆;3—线圈绕线架;4—内置导磁缸体;5—左楔形环;6—隔磁环;7—磁流变液;8—励磁线圈;9—缸体;10—右楔形环;11—右压板。
图7  磁流变阻尼器磁力线分布
图8  电路为2 A时路径S上磁感应强度分布
图9  平均磁感应强度随电流的变化曲线
图10  不同电流下磁流变阻尼器阻尼特性曲线
图11  不同频率下阻尼力—位移曲线
图12  不同振幅下阻尼力—位移曲线
优化参数取值范围
活塞头侧翼磁轭轴向长度L13~7
绕线槽深度t5~8
绕线槽小径tb6~10
绕线槽轴向长度w8~24
楔形环厚度h12~4
内置导磁缸体厚度h22~4
表2  磁流变阻尼器优化参数取值范围 (mm)
图13  NSGA-Ⅱ多目标遗传算法流程
优化参数优化前优化后
V/mm326 71720 190
L1/mm53
t/mm6.58
tb/mm88
w/mm1620
h1/mm32
h2/mm32
表3  优化前后磁流变阻尼器结构参数值
图14  优化前后平均磁感应强度随电流的变化曲线
图15  优化前后最大输出阻尼力随电流的变化曲线
图16  优化前后磁流变阻尼器样机
图17  磁流变阻尼器力学性能测试系统
图18  优化前后不同电流下阻尼力—位移曲线
图19  优化前后不同频率下阻尼力—位移曲线
图20  优化前后不同振幅下阻尼力—位移曲线
图21  优化前后阻尼器输出阻尼力对比
1 戴亮. 国务院新闻办发表《平等、参与、共享: 新中国残疾人权益保障70年》白皮书[J]. 现代特殊教育, 2019(19): 5-7.
DAI L. The state council information office of the People’s Republic of China issued white paper: Equality, participation and sharing: 70 years of protecting the rights and interests of persons with disabilities in the PRC [J]. Modern Special Education, 2019(19): 5-7.
2 PARK J, YOON G H, KANG J W, et al. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes[J]. Smart Material Structures, 2016, 25(8): 085009.
3 刘旭辉, 罗启文, 丁志娟, 等. 智能假肢膝关节的优化设计及运动学分析[J]. 现代制造工程, 2020(2): 76-81.
LIU X H, LUO Q W, DING Z J, et al. Optimum design and dynamics analysis of intelligent prosthetic knee joint[J]. Modern Manufacturing Engineering, 2020(2): 76-81.
4 XU L, WANG D H, FU Q, et al. A novel four-bar linkage prosthetic knee based on magnetorheological effect: Principle, structure, simulation and control [J]. Smart Materials and Structures, 2016, 25(11): 115007.
5 HU G, YING S, QI H, et al. Design, analysis and optimization of a hybrid fluid flow magnetorheological damper based on multiphysics coupling model [J]. Mechanical Systems and Signal Processing, 2023, 205: 110877.
6 RAHMAN M, ONG Z C, JULAI S, et al. A review of advances in magnetorheological dampers: Their design optimization and applications [J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2017, 18(12): 991-1010.
7 WANG J, LIU Y F, QIN Z Y, et al. Dynamic performance of a novel integral magnetorheological damper-rotor system[J]. Mechanical Systems and Signal Processing, 2022, 172: 109004.
8 SAINI R S T, CHANDRAMOHAN S, SUJATHA S, et al. Design of bypass rotary vane magnetorheological damper for prosthetic knee application[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(9): 931-942.
9 强彦, 柴铭堃, 陈奕泽, 等. 用于四连杆下假肢的孔隙结合式磁流变液阻尼器设计[J]. 液压与气动, 2022, 46(5): 94-102.
QIANG Y, CHAI M K, CHEN Y Z, et al. Design of pore combined magnetorheological fluid damper for four link lower prosthesis[J]. Chinese Hydraulics & Pneumatics, 2022, 46(5): 94-102.
10 YANG G Q, SPENCER B F, JUNG H J, et al. Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications[J]. Journal of Engineering Mechanics, 2004, 130(9): 1107-1114.
11 易锋, 胡国良, 梅鑫, 等. 单轴式磁流变假肢膝关节设计及CT+PD轨迹跟踪控制[J]. 机械科学与技术, 2021, 40(7): 985-992.
YI F, HU G L, MEI X, et al. Designing uniaxial magnetorheological damper-based prosthetic knee and CT+PD trajectory tracking control[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 985-992.
12 JIANG M, RUI X T, YANG F F, et al. Multi-objective optimization design for a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(1): 33-45.
13 MARATHE A P, KHOT S M, NAGLER J. Development of low-cost optimal magneto-rheological damper for automotive application[J]. Journal of Vibration Engineering & Technologies, 2022, 10(5): 1831-1850.
14 OLIVIER M, SOHN J W. Design and geometric parameter optimization of hybrid magnetorheological fluid damper[J]. Journal of Mechanical Science and Technology, 2020, 34(7): 2953-2960.
15 FU Q, WANG D H, XU L, et al. A magnetorheological damper-based prosthetic knee (MRPK) and sliding mode tracking control method for an MRPK-based lower limb prosthesis[J]. Smart Materials and Structures, 2017, 26(4): 045030.
16 LIU G Y, GAO F, LIAO W H. Design and optimization of a magnetorheological damper based on B-spline curves[J]. Mechanical Systems and Signal Processing, 2022, 178: 109279.
17 SEID S, CHANDRAMOHAN S, SUJATHA S. Design and evaluation of a magnetorheological damper based prosthetic knee[J]. International Journal of Engineering, 2019, 32(1): : 146-152.
18 GAO F, LIU Y N, LIAO W H. Optimal design of a magnetorheological damper used in smart prosthetic knees[J]. Smart Material Structures, 2017, 26(3): 035034.
19 KUMAR S, CHANDRAMOHAN S, SUJATHA S. Optimal design of magnetorheological valve using the coupling of FE magnetic analysis and MOGA optimization for prosthetic ankle[J]. Journal of Vibration Engineering & Technologies, 2024, 12(2): 2205-2217.
20 KUMAR S, CHANDRAMOHAN S, SUJATHA S. Geometric optimization of magnetorheological damper for prosthetic ankles using artificial neural networks[J]. Mechatronics, 2024, 98: 103108.
21 SAINI, T R S. Design, fabrication and characterization of an optimal magnetorheological (MR) damper for prosthetic knee application [D]. Surathkal: National Institute of Technology Karnataka, 2021.
22 ARTEAGA O, ESCORZA J, MEDINA I, et al. Prototype of robotic ankle-foot prosthesis with active damping using magnetorheological fluids[J]. International Journal of Mechanical Engineering and Robotics Research, 2019: 753-758.
23 胡国良, 杨肖, 朱文才, 等. 具有内外线圈结构的磁流变阀压降性能分析[J]. 南昌工程学院学报, 2023, 42(3): 1-7.
HU G L, YANG X, ZHU W C, et al. Analysis of pressure drop performance of magnetorheological valve with inner and outer excitation coils[J]. Journal of Nanchang Institute of Technology, 2023, 42(3): 1-7.
[1] 谢海波,洪昊岑,王柏村,姜伟,杨华勇. 基于多目标遗传算法的斜盘式轴向柱塞泵低脉动结构优化设计[J]. 工程设计学报, 2024, 31(2): 160-167.
[2] 曹望城,韩佳轩,姚廷强. 基于参数化多体动力学模型的内齿式回转支承动态优化设计[J]. 工程设计学报, 2024, 31(2): 168-177.
[3] 席兴盛,胡国良,朱文才,喻理梵,李刚. 振动能量采集型磁流变阻尼器发电性能研究[J]. 工程设计学报, 2024, 31(2): 201-209.
[4] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[5] 刘江,肖正明,张龙隆,刘卫标. 考虑摆线轮磨损的RV减速器传动精度可靠性分析与参数优化[J]. 工程设计学报, 2022, 29(6): 739-747.
[6] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[7] 苏芳, 罗茹楠, 刘艳明, 王晨升. 双轴联动进给系统多目标优化设计与研究[J]. 工程设计学报, 2020, 27(4): 456-462.
[8] 高启升, 朱兴华, 于延凯, 郑荣. UUV耐压结构多目标优化设计[J]. 工程设计学报, 2020, 27(2): 232-238.
[9] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.
[10] 王哲, 陈勇, 曹展, 李光鑫, 左扣成. 纯电动汽车两挡变速器减振降噪研究[J]. 工程设计学报, 2019, 26(3): 280-286.
[11] 杨晨光, 邵宝东, 王丽凤, 杨洋. 基于热阻网络模型的硅基微槽热沉多目标优化设计[J]. 工程设计学报, 2018, 25(4): 426-433.
[12] 程明, 陈照波, KIM Kyongsol, 焦映厚. 多级蜿蜒磁路式磁流变阻尼器的设计与分析[J]. 工程设计学报, 2017, 24(3): 350-358.
[13] 杨绍勇, 雷飞, 陈园. 基于铺层设计特征的碳纤维增强复合材料悬架控制臂结构优化[J]. 工程设计学报, 2016, 23(6): 600-605,619.
[14] 邬思敏, 孟文俊, 李淑君, 王尧, 徐成功. 双线圈旁置式新型磁流变制动器的设计与优化[J]. 工程设计学报, 2016, 23(5): 453-460.
[15] 毛 君,李 强,谢 苗,曹建南. 多目标优化软件开发及其应用[J]. 工程设计学报, 2015, 22(3): 262-268.