Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2125-2133    DOI: 10.3785/j.issn.1008-973X.2025.10.013
    
Thermal contact resistance calculation at rock-lining interface in high-temperature tunnels with consideration of surrounding rock lithology
Guangyao CUI1(),Ziyang HE1,Daoyuan WANG2,3,Wenhao SHI4
1. School of Civil Engineering, North China University of Technology, Beijing 100144, China
2. Department of Road and Bridge Engineering, Hebei Jiaotong Vocational and Technical College, Shijiazhuang 050091, China
3. Hebei Provincial Seasonal Frozen Area Highway Service Safety and Early Warning Technology Innovation Center, Shijiazhuang 050091, China
4. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
Download: HTML     PDF(1405KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To accurately reflect the temperature jump phenomenon at the surrounding rock-lining interface, a new calculation method for thermal contact resistance was proposed. Based on the disc-model thermal contact resistance calculation, a rock thermal impedance evaluation coefficient was introduced as a function of the rock-mass basic quality index for different surrounding rocks. The accuracy of the proposed method was verified through numerical simulations and laboratory experiments. When the temperature was increased from 20 ℃ to 80 ℃, the interfacial thermal contact resistance between rock and concrete specimens decreased. As the surrounding rock grade declined and its quality deteriorated, the rock-mass basic quality index decreased. A higher thermal impedance evaluation coefficient resulted in a more pronounced increase in interfacial thermal contact resistance, with a maximum increase of 111.24%. The maximum relative error between the interfacial thermal contact resistance calculated using the proposed method and the theoretical results was 12.52%. Experimental results show that the proposed method takes into account the lithological factors of the surrounding rock. Compared with traditional methods, the proposed method features convenient parameter acquisition and strong engineering applicability.



Key wordstunnel engineering      high rock temperature      surrounding rock-lining      interfacial thermal contact resistance      calculation method      laboratory experiment     
Received: 27 September 2024      Published: 27 October 2025
CLC:  U 451  
Fund:  国家自然科学基金资助项目(52178378).
Cite this article:

Guangyao CUI,Ziyang HE,Daoyuan WANG,Wenhao SHI. Thermal contact resistance calculation at rock-lining interface in high-temperature tunnels with consideration of surrounding rock lithology. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2125-2133.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.013     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2125


考虑围岩岩性影响的高岩温隧道围岩-衬砌界面接触热阻计算方法

为了准确反映围岩-衬砌界面的温度跃变现象,基于圆盘模型下的界面接触热阻计算公式,根据不同围岩的岩体基本质量指标引入岩石热阻抗评价系数,提出新的界面接触热阻计算方法. 通过数值模拟和室内实验验证所提方法的准确性. 当温度由20 ℃升至80 ℃时,岩石与混凝土试件的界面接触热阻呈减小趋势. 围岩等级和质量越低,岩体基本质量指标越小;热阻抗评价系数越高,界面接触热阻增大越明显,最大增幅为111.24%. 采用所提方法计算的界面接触热阻与理论结果的最大相对误差为12.52%. 实验结果表明,所提方法考虑了围岩岩性因素,相比传统方法,具有获得参数便捷、工程适用性强的特点.


关键词: 隧道工程,  高岩温,  围岩-衬砌,  界面接触热阻,  计算方法,  室内实验 
Fig.1 Schematic diagram of temperature jump phenomenon
Fig.2 Model of interfacial thermal contact resistance
岩石种类λ/(W·m?1?K?1)岩石种类λ/(W·m?1?K?1)
玄武岩1.16~4.71砂岩1.32~5.25
页岩1.80~4.15泥岩1.22~2.22
花岗岩2.63~3.55
Tab.1 Thermal conductivity of rock
围岩质量等级BQB
>550<0.4
450~5500.5~0.4
350~4500.6~0.5
250~3500.7~0.6
<250>0.7
Tab.2 Rock thermal impedance evaluation coefficients for different surrounding rock quality grades
Fig.3 Calculation model of interfacial thermal contact resistance between granite and concrete
参数数值
花岗岩C30混凝土
γ/(kN·m?326.024.0
E/GPa6030
μ0.180.22
φ/(°)65
cc/MPa22.5
λ/(W?m?1?K?1)2.601.36
c/(J·kg?1·K?1)850960
α/K?18.00×10?69.75×10?6
Tab.3 Calculation parameters for granite and concrete
Fig.4 Temperature difference across granite-concrete contact interface
试件H/MPaσ/μmρ/(g·cm?3)φ/%
玄武岩(Ⅰ级)150902.8584
页岩(Ⅰ级)100952.6046
花岗岩(Ⅱ级)601002.5564
砂岩(Ⅲ级)451052.38810
泥岩(Ⅳ级)151151.87615
C25试块20932.26818
C30试块30882.36616
C35试块35852.26513
C40试块40802.22011
Tab.4 Physical parameters of rock and concrete specimens
Fig.5 Laboratory specimen for testing surrounding rock-lining thermal contact resistance
Fig.6 Thermal conductivity measurement device TC3000E
Fig.7 Laboratory measurement mode for surrounding rock-lining thermal contact resistance
Fig.8 Calculated interfacial thermal contact resistance for different specimen groups
分组R/(10?3 m2·K·W?1)δ/%
理论结果计算结果
C25-玄武岩3.7894.0767.587
C25-页岩4.3324.4582.906
C25-花岗岩5.1204.883?4.636
C25-砂岩6.8666.539?4.766
C25-泥岩9.1348.534?6.563
C30-玄武岩3.6183.8646.783
C30-页岩4.3754.331?1.005
C30-花岗岩4.8844.628?5.242
C30-砂岩6.6866.072?9.194
C30-泥岩8.4417.982?5.435
C35-玄武岩3.6613.567?2.578
C35-页岩3.9084.2037.572
C35-花岗岩4.6044.331?5.931
C35-砂岩6.1485.562?9.528
C35-泥岩7.7927.515?3.549
C40-玄武岩3.5883.439?4.143
C40-页岩3.4403.7368.604
C40-花岗岩3.9584.0762.971
C40-砂岩5.6995.477?3.894
C40-泥岩7.5327.048?6.424
Tab.5 Relative error between calculated and theoretical interfacial thermal contact resistance
[1]   薛翊国, 孔凡猛, 杨为民, 等 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报, 2020, 39 (3): 445- 468
XUE Yiguo, KONG Fanmeng, YANG Weimin, et al Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (3): 445- 468
[2]   郭平业, 卜墨华, 张鹏, 等 高地温隧道灾变机制与灾害防控研究进展[J]. 岩石力学与工程学报, 2023, 42 (7): 1561- 1581
GUO Pingye, BU Mohua, ZHANG Peng, et al Review on catastrophe mechanism and disaster countermeasure of high geotemperature tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (7): 1561- 1581
[3]   赵志宏, 徐浩然, 刘峰, 等 川藏铁路折多山段隧道温度场与热害初步预测[J]. 现代地质, 2021, 35 (1): 180- 187
ZHAO Zhihong, XU Haoran, LIU Feng, et al Preliminary prediction of temperature field and thermal damage in Zheduoshan Region along Sichuan-Tibet railway[J]. Geoscience, 2021, 35 (1): 180- 187
[4]   蒙伟, 何川, 张钧博, 等 高地温高地应力下岩体初始地应力场反演分析[J]. 岩石力学与工程学报, 2020, 39 (4): 749- 760
MENG Wei, HE Chuan, ZHANG Junbo, et al Inverse analysis of the initial geostress field of rock masses under high geo-temperature and high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (4): 749- 760
[5]   王才进, 蔡国军, 武猛, 等 基于人工智能算法预测土体导热系数[J]. 岩土工程学报, 2022, 44 (10): 1899- 1907
WANG Caijin, CAI Guojun, WU Meng, et al Prediction of thermal conductivity of soils based on artificial intelligence algorithm[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (10): 1899- 1907
[6]   刘松玉, 郭易木, 张国柱, 等 热传导CPT探头的研发与应用[J]. 岩土工程学报, 2020, 42 (2): 354- 361
LIU Songyu, GUO Yimu, ZHANG Guozhu, et al Development and application of heat conduction CPT probe[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (2): 354- 361
[7]   王明年, 唐兴华, 吴秋军, 等 高岩温隧道围岩-支护结构温度场演化规律[J]. 铁道学报, 2016, 38 (11): 126- 131
WANG Mingnian, TANG Xinghua, WU Qiujun, et al Temperature field variation rules of rock and support structure in high rock temperature tunnel[J]. Journal of the China Railway Society, 2016, 38 (11): 126- 131
[8]   傅金阳, 徐光阳, 杨曾, 等 高地温隧道衬砌混凝土早期开裂机理及防控措施[J]. 铁道学报, 2022, 44 (3): 105- 114
FU Jinyang, XU Guangyang, YANG Zeng, et al Early cracking mechanism and prevention measures for lining concrete in high geotemperature tunnel[J]. Journal of the China Railway Society, 2022, 44 (3): 105- 114
[9]   孙其清, 郑宗溪, 谭永杰 高地温隧道二次衬砌受力特性分析[J]. 铁道工程学报, 2018, 35 (4): 70- 74
SUN Qiqing, ZHENG Zongxi, TAN Yongjie Analysis of the stress characteristics of the high ground temperature tunnel secondary lining[J]. Journal of Railway Engineering Society, 2018, 35 (4): 70- 74
[10]   吴梦军, 吴庆良, 金文良, 等 考虑接触热阻的钢壳沉管隧道结构火灾温度场研究[J]. 中国公路学报, 2023, 36 (11): 244- 255
WU Mengjun, WU Qingliang, JIN Wenliang, et al Fire temperature field of steel shell immersed tunnel structure considering contact thermal resistance[J]. China Journal of Highway and Transport, 2023, 36 (11): 244- 255
[11]   刘江, 张宁, 刘永健, 等 钢-混组合梁荷载-温度效应的统一解析模型[J]. 浙江大学学报: 工学版, 2024, 58 (5): 988- 1000
LIU Jiang, ZHANG Ning, LIU Yongjian, et al Unified analytical model for load-temperature effect of steel-concrete composite girder[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (5): 988- 1000
[12]   WEN M J, TIAN Y, WU W B, et al Influence of thermal contact resistance on dynamic response of bilayered saturated porous strata[J]. Journal of Central South University, 2022, 29 (6): 1823- 1839
doi: 10.1007/s11771-022-5053-2
[13]   张涛, 杨玉玲, 叶晓平, 等 考虑颗粒形貌的干砂热传导特性研究[J]. 岩土工程学报, 2024, 46 (1): 182- 189
ZHANG Tao, YANG Yuling, YE Xiaoping, et al Thermal conduction behaviors of dry sands considering effects of particle shape[J]. Chinese Journal of Geotechnical Engineering, 2024, 46 (1): 182- 189
[14]   王迪昌, 廉曾妍, 王沛, 等 界面平均温度和压力对DD5和1Cr11Ni2W2MoV材料接触热阻影响的实验研究[J]. 中国科学院大学学报, 2023, 40 (6): 726- 734
WANG Dichang, LIAN Zengyan, WANG Pei, et al Experimental study on the influences of mean interface temperature and pressure on thermal contact resistance of the material DD5 and 1Cr11Ni2W2MoV[J]. Journal of University of Chinese Academy of Sciences, 2023, 40 (6): 726- 734
[15]   汪献伟, 王兆亮, 何庆, 等 宏观接触热阻研究综述[J]. 工程科学学报, 2019, 41 (10): 1240- 1248
WANG Xianwei, WANG Zhaoliang, HE Qing, et al Research overview of macroscopic thermal contact resistance[J]. Chinese Journal of Engineering, 2019, 41 (10): 1240- 1248
[16]   GARCIA A V, SANTAMARINA J C Heat flow in fractured rocks: stress and moisture-dependent thermal contact resistance[J]. Geothermics, 2021, 95: 102113
doi: 10.1016/j.geothermics.2021.102113
[17]   雷晓东, 胡圣标, 李娟, 等 北京地区基岩地层热物性参数特征[J]. 地球物理学进展, 2018, 33 (5): 1814- 1823
LEI Xiaodong, HU Shengbiao, LI Juan, et al Thermal properties analysis of bedrock in Beijing[J]. Progress in Geophysics, 2018, 33 (5): 1814- 1823
[18]   宋小庆, 江明, 彭钦, 等 贵州主要岩石地层热物性参数特征及影响因素分析[J]. 地质学报, 2019, 93 (8): 2092- 2103
SONG Xiaoqing, JIANG Ming, PENG Qin, et al Thermal property parameters and influencing factor analysis of main rock strata in Guizhou Province[J]. Acta Geologica Sinica, 2019, 93 (8): 2092- 2103
[19]   LIE T T, KODUR V K R Fire resistance of steel columns filled with bar-reinforced concrete[J]. Journal of Structural Engineering, 1996, 122 (1): 30- 36
doi: 10.1061/(ASCE)0733-9445(1996)122:1(30)
[20]   中华人民共和国住房和城乡建设部. 工程岩体分级标准: GB/T 50218—2014 [S]. 北京: 中国计划出版社, 2015.
[21]   COOPER M G, MIKIC B B, YOVANOVICH M M Thermal contact conductance[J]. International Journal of Heat and Mass Transfer, 1969, 12 (3): 279- 300
doi: 10.1016/0017-9310(69)90011-8
[22]   顾慰兰 一种随机表面间接触热阻的计算方法[J]. 航空动力学报, 1995, 10 (3): 233- 236
GU Weilan A method for calculation of contact heat resistance between two contacting surfaces[J]. Journal of Aerospace Power, 1995, 10 (3): 233- 236
[23]   曹占伟, 陈鑫, 付斌, 等 碳/碳化硅复合材料接触热阻计算方法[J]. 兵工学报, 2022, 43 (11): 2897- 2904
CAO Zhanwei, CHEN Xin, FU Bin, et al Engineering investigations of thermal contact resistance of C/SiC composite materials[J]. Acta Armamentarii, 2022, 43 (11): 2897- 2904
[24]   温诗铸, 黄平, 田煜, 等. 摩擦学原理 [M]. 5版. 北京: 清华大学出版社, 2018.
[25]   ZHANG M, SHENG Q, CUI Z Experimental and numerical study on the mechanical properties of the rock-concrete contact surface for consideration of ground–liner interaction in rock tunnelling[J]. European Journal of Environmental and Civil Engineering, 2023, 27 (1): 339- 355
doi: 10.1080/19648189.2022.2042741
[26]   徐平, 洪志康, 沈佳兴, 等 油介质钢-BFPC结合面的热特性分析[J]. 西南交通大学学报, 2023, 58 (6): 1303- 1310
XU Ping, HONG Zhikang, SHEN Jiaxing, et al Thermal characteristics of steel-BFPC interface under oil medium[J]. Journal of Southwest Jiaotong University, 2023, 58 (6): 1303- 1310
[1] Jianfei MA,Gangshuai JIA,Bo JIANG,Zheng CHEN,Xiaokang LING,Shaohui HE. Study on service safety of super-large-span tunnels considering combined defects of lining voids and thinning[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 698-705.
[2] Qing-lu MA,Jia-ping LU,Xiao-yao TANG,Xue-feng DUAN. Improved YOLOv5s flame and smoke detection method in road tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 784-794.
[3] Jin-feng WANG,Song-wei YANG,Yang-yang KANG,Hua-wei XIANG. General calculation method for manufacturing parameters of steel box girder in staged construction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 550-557.
[4] Bao-qiang ZHU,Shu-hong WANG,Ze ZHANG,Peng-yu WANG,Fu-rui DONG. Prediction method of tunnel deformation based on time series and DEGWO-SVR model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2275-2285.
[5] Jian-ping ZHAO,Jian-wu LI,Lin Bi,Bei-bei CHENG. Analytical solution of seepage field and reasonable support parameters of tunnel in water rich area[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2142-2150.
[6] Kang CHENG,Ri-qing XU,Cun-gang LIN,Rong-zhu LIANG,Hua-feng SHAN,Ming ZHAO. Simplified method for predicting surrounding soil’s horizontal displacement caused by arbitrary deflection of retaining wall[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 899-908.
[7] ZHOU Yu qing1,2, YU Jin, ZHANG Jian zhi. Analytic theory about stress relaxation effects of rock around circular tunnel[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2170-2176.
[8] WEI Jun, ZHANG Meng, YANG Man-juan, DONG Rong-zhen. Calculation method for designing concrete structure guardrail[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 249-253.