Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1362-1372    DOI: 10.3785/j.issn.1008-973X.2025.07.004
    
Traffic flow forecasting with multi-resolution trend period decoupling interaction
Yue HOU(),Tiantian WANG,Xin ZHANG,Jie YIN
School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(1278KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A traffic flow prediction model with multi-resolution trend period decoupling interaction was proposed, aiming at the problems of traffic flow temporal characteristic transfer and insufficient trend period feature extraction in the real road network. The time domain decoupling module decoupled the time series data into multi-resolution trend and fluctuation components, ensuring that the trend characteristics did not change with the fluctuation characteristics, thereby addressing the issue of shifting temporal characteristics in traffic flow. The multi-resolution trend period interaction module integrated significant periodic features by applying even-odd downsampling to the trends and then completed the interaction with the original even-odd sequences. The time-frequency fluctuation feature extraction module effectively captured the instantaneous changes in fluctuation components by combining multi-resolution causal convolution. The frequency domain reconstruction module performed the traffic flow prediction task under time-frequency domain conversion by utilizing inverse discrete wavelet transform. Comparative experiments on model performance were conducted in the PeMSD4 and PeMSD8 traffic datasets. Results show that compared to the downsampled convolutional interaction model, the proposed model achieves a reduction in mean absolute error, rooted mean square error, and mean absolute percentage error by 26.21%, 30.49%; 25.97%, 32.51%; and 8.00%, 25.49%, respectively, demonstrating the superior performance of the proposed model.



Key wordstraffic flow prediction      multi-resolution      trend characterization      periodic characterization      wavelet transform     
Received: 01 July 2024      Published: 25 July 2025
CLC:  U 491.1  
Fund:  国家自然科学基金资助项目(62063014, 62363020);甘肃省自然科学基金资助项目(22JR5RA365).
Cite this article:

Yue HOU,Tiantian WANG,Xin ZHANG,Jie YIN. Traffic flow forecasting with multi-resolution trend period decoupling interaction. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1362-1372.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.004     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1362


多分辨率趋势周期解耦交互的交通流预测

针对现实路网交通流时序特性转移、趋势周期特征提取不充分的问题,提出多分辨率趋势周期解耦交互的交通流预测模型. 时域解耦模块将时序数据解耦为多分辨率趋势、波动分量,使趋势特性不随波动特性变化而变化,解决交通流时间特性转移问题. 多分辨率趋势周期交互模块利用趋势奇偶下采样的方式融合显著性周期特征,完成与奇偶原序列间的交互. 时频波动特征提取模块结合多分辨率因果卷积实现波动分量瞬时变化的有效捕捉,频域重构模块以逆离散小波变换的方式实现频时域转换下的交通流预测任务. 在交通数据集PeMSD4和PeMSD8中开展的模型性能对比实验结果表明,相较于下采样卷积交互模型,所提模型的平均绝对误差、均方根误差及平均绝对百分误差分别降低了26.21%、30.49%,25.97%、32.51%,8.00%、25.49%,所提模型的性能更优.


关键词: 交通流预测,  多分辨率,  趋势特性,  周期特性,  小波变换 
Fig.1 Overall framework of traffic flow prediction model with multi-resolution trend period decoupling interaction
Fig.2 Two-level discrete wavelet transform
Fig.3 Process of constructing 2D significant period matrices
Fig.4 Structure of multi-resolution trend period interaction module
Fig.5 Traffic flow data and mutation points for one day at node of PeMSD8 dataset
Fig.6 Causal convolutional structure of 2D multi-resolution convolutional blocks
模型PeMSD4PeMSD8
MAERMSEMAPEMAERMSEMAPE
HA31.48349.0910.23528.10342.6320.199
SVR28.43541.4780.21420.12628.9870.145
LSTM23.99039.2690.16721.93535.1740.134
CNN_LSTM22.38236.4550.15021.09032.9100.131
TCN23.06136.0340.14919.22030.1600.118
ASTGCN21.81434.4030.13018.82129.1480.109
SCINet20.13131.9270.12516.49825.7090.102
MTPDI14.85523.6350.11511.46717.3520.076
Tab.1 Traffic flow prediction accuracy of different models in two datasets

模型
t/minPeMSD4PeMSD8
MAERMSEMAPEMAERMSEMAPE
HA5
25
45
24.020
28.760
35.180
39.930
45.260
53.870
0.201
0.219
0.253
20.820
26.020
31.360
34.670
39.890
46.570
0.171
0.187
0.212
SVR5
25
45
26.007
27.460
29.580
38.630
40.360
42.820
0.195
0.205
0.223
18.047
19.220
21.100
26.504
27.980
30.140
0.130
0.138
0.152
LSTM5
25
45
22.721
24.082
24.401
37.487
39.394
39.883
0.159
0.168
0.170
20.008
22.244
22.322
31.837
35.799
35.724
0.125
0.134
0.139
CNN_LSTM5
25
45
22.079
22.481
22.485
35.723
36.601
36.636
0.145
0.156
0.158
20.205
21.014
21.360
31.540
32.719
33.356
0.127
0.131
0.133
TCN5
25
45
18.345
22.504
26.269
29.095
35.371
40.333
0.122
0.146
0.172
13.721
19.461
20.821
21.295
31.443
32.082
0.086
0.117
0.128
ASTGCN5
25
45
17.737
20.927
23.342
28.343
33.045
36.429
0.108
0.125
0.138
14.241
18.000
20.531
21.787
27.842
31.581
0.090
0.105
0.116
SCINet5
25
45
19.109
19.532
20.368
29.473
31.306
32.259
0.120
0.125
0.126
13.989
16.729
17.655
21.798
26.490
26.876
0.087
0.099
0.114
MTPDI5
25
45
11.153
13.635
14.453
17.029
21.791
22.248
0.091
0.106
0.111
9.091
10.355
10.763
13.485
16.060
16.270
0.061
0.068
0.073
Tab.2 Traffic flow prediction accuracy of different models at time steps in two datasets
Fig.7 Comparison of ture values with predicted values of proposed model in two datasets
模型MAERMSEMAPE
MTPDI-M16.76926.1340.104
MTPDI-P13.05420.4580.083
MTPDI-I34.55449.0580.211
MTPDI11.46717.3520.076
Tab.3 Ablation study results of proposed model on PeMSD8 dataset
模型$\hat t$ = 5 min$\hat t $ = 30 min$\hat t $ = 60 min
MAERMSEMAPEMAERMSEMAPEMAERMSEMAPE
MTPDI-M13.71221.3320.08716.55025.9490.10018.24128.5820.113
MTPDI-P13.03420.3870.08313.51821.3570.08513.93621.3640.091
MTPDI-I28.64241.0120.17635.12849.7380.21439.66956.1880.237
MTPDI9.09113.4850.06112.46918.9720.08213.04119.2090.086
Tab.4 Ablation study results of proposed model at different time steps
Fig.8 Output characteristic heat map of two modules of proposed model in PeMSD4 dataset
Fig.9 Output characteristic heat map of two modules of proposed model in PeMSD8 dataset
周期尺度MAERMSEMAPE
小时14.85523.6350.115
单日14.64323.3530.116
星期14.95223.7500.117
Tab.5 Traffic flow prediction accuracy of proposed model at different temporal scales
Fig.10 Multi-scale periodograms of MTPDI model on PeMSD4 dataset
kMAERMSEMAPE
29.80117.9390.035
310.76118.8860.038
411.47819.8370.041
511.37919.6190.040
612.06720.8700.043
Tab.6 Traffic flow prediction accuracy of different salient frequency parameters
[1]   崔建勋, 要甲, 赵泊媛 基于深度学习的短期交通流预测方法综述[J]. 交通运输工程学报, 2024, 24 (2): 50- 64
CUI Jianxun, YAO Jia, ZHAO Boyuan Review on short-term traffic flow prediction methods based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2024, 24 (2): 50- 64
[2]   AHMED M S, COOK A R Analysis of freeway traffic time-series data by using box-jenkins techniques[J]. Transportation Research Record, 1979, (722): 1- 9
[3]   SMITH B L, DEMETSKY M J Traffic flow forecasting: comparison of modeling approaches[J]. Journal of Transportation Engineering, 1997, 123 (4): 261- 266
doi: 10.1061/(ASCE)0733-947X(1997)123:4(261)
[4]   TONG J, GU X, ZHANG M, et al. Traffic flow prediction based on improved SVR for VANET [C]// Proceedings of the 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering. Changsha: IEEE, 2021: 402–405.
[5]   CHENG S, LU F, PENG P, et al Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71: 186- 198
doi: 10.1016/j.compenvurbsys.2018.05.009
[6]   ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization [EB/OL]. (2015–02–19)[2024–07–01]. https://arxiv.org/pdf/1409.2329.
[7]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[8]   ZHANG R, SUN F, SONG Z, et al Short-term traffic flow forecasting model based on GA-TCN[J]. Journal of Advanced Transportation, 2021, 2021 (1): 1338607
[9]   VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [EB/OL]. (2023–08–02)[2024–07–01]. https://arxiv.org/pdf/1706.03762.
[10]   WANG H, PENG J, HUANG F, et al. MICN: multi-scale local and global context modeling for long-term series forecasting [C]// The Eleventh International Conference on Learning Representations. Kigali: [s. n.], 2023: 1–22.
[11]   ZHANG X, HUANG K, LIU C, et al. Urban short-term traffic flow prediction algorithm based on CNN-LSTM model [C]// Proceedings of the 3rd International Conference on Consumer Electronics and Computer Engineering. Guangzhou: IEEE, 2023: 214–217.
[12]   史昕, 曹凤腾, 纪艺, 等 基于多尺度时空特征与软注意力机制的交通流预测方法[J]. 计算机工程, 2024, 50 (12): 346- 357
SHI Xin, CAO Fengteng, JI Yi, et al Traffic flow prediction method based on multi-scale spatio-temporal features and soft attention mechanism[J]. Computer Engineering, 2024, 50 (12): 346- 357
[13]   WU H, HU T, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis [EB/OL]. (2023–04–12)[2024–07–01]. https://arxiv.org/pdf/2210.02186.
[14]   WANG X, WANG Z, YANG K, et al. MPPN: multi-resolution periodic pattern network for long-term time series forecasting [EB/OL]. (2023–06–12)[2024–07–01]. https://arxiv.org/pdf/2306.06895.
[15]   赵顗, 沈玲宏, 马健霄, 等 综合小波分解和BP神经网络的交通小区生成交通短时预测[J]. 重庆交通大学学报: 自然科学版, 2021, 40 (11): 60- 66
ZHAO Yi, SHEN Linghong, MA Jianxiao, et al Traffic short-term prediction generated by wavelet decomposition and BP neural network of traffic zone[J]. Journal of Chongqing Jiaotong University: Natural Science, 2021, 40 (11): 60- 66
[16]   SASAL L, CHAKRABORTY T, HADID A. W-Transformers: a wavelet-based transformer framework for univariate time series forecasting [C]// Proceedings of the 21st IEEE International Conference on Machine Learning and Applications. Nassau: IEEE, 2022: 671–676.
[17]   博格斯, 马科维奇. 小波与傅里叶分析基础[M]. 2版. 芮国胜, 康健, 译. 北京: 电子工业出版社, 2010: 173–194.
[18]   LIU Y, ZHENG H, FENG X, et al. Short-term traffic flow prediction with Conv-LSTM [C]// Proceedings of the 9th International Conference on Wireless Communications and Signal Processing. Nanjing: IEEE, 2017: 1–6.
[19]   陈峰浩. 基于时空特征分析的多步交通流量预测研究[D]. 杭州: 浙江科技大学, 2024: 1–59.
CHEN Fenghao. Research on multi-step traffic flow prediction based on spatio-temporal feature analysis [D]. Hangzhou: Zhejiang University of Science and Technology, 2024: 1–59.
[20]   COOLEY J W, TUKEY J W An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19 (90): 297- 301
doi: 10.1090/S0025-5718-1965-0178586-1
[21]   FANG Y, QIN Y, LUO H, et al. When spatio-temporal meet wavelets: disentangled traffic forecasting via efficient spectral graph attention networks [C]// Proceedings of the IEEE 39th International Conference on Data Engineering. Anaheim: IEEE, 2023: 517–529.
[22]   HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
[23]   闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1147- 1155
YAN Xu, FAN Xiaoliang, ZHENG Chuanpan, et al Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1147- 1155
[24]   SUN Y, ZHANG G, YIN H Passenger flow prediction of subway transfer stations based on nonparametric regression model[J]. Discrete Dynamics in Nature and Society, 2014, 2014 (1): 397154
[25]   LIVIERIS I E, PINTELAS E, PINTELAS P A CNN–LSTM model for gold price time-series forecasting[J]. Neural Computing and Applications, 2020, 32 (23): 17351- 17360
doi: 10.1007/s00521-020-04867-x
[26]   BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [EB/OL]. (2018–04–19)[2024–07–01]. https://arxiv.org/pdf/1803.01271.
[27]   GUO S, LIN Y, FENG N, et al Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 922- 929
doi: 10.1609/aaai.v33i01.3301922
[28]   LIU M, ZENG A, CHEN M, et al. SCINet: time series modeling and forecasting with sample convolution and interaction [C]// 36th Conference on Neural Information Processing Systems. New Orleans: [s. n.], 2022, 1–13.
[1] Xinjian XIANG,Tianshun YUAN,Yaqiang HE,Chengli WANG. Traffic flow prediction based on time series decomposition and soft thresholding temporal convolution[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1353-1361.
[2] Qincheng JIANG,Jianfeng TAO,Yangyang WANG,Yulei ZHANG,Chengliang LIU. EWT-LSTM based industrial robot joint anomaly detection[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 982-994.
[3] Li MA,Yongshun WANG,Yao HU,Lei FAN. Pre-trained long-short spatiotemporal interleaved Transformer for traffic flow prediction applications[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 669-678.
[4] Jinye LI,Yongqiang LI. Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1366-1376.
[5] Bingyang ZHU,Jianfeng WU,Ke WANG,Zhangquan WANG,Banteng LIU. Sleep staging based on single-channel ECG signal and INFO-ABCLogitBoost model[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2547-2555.
[6] Dian-hai WANG,Rui XIE,Zheng-yi CAI. Prediction of urban interrupted traffic flow based on optimal convergence time interval[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1607-1617.
[7] Ling-wei ZHANG,Zheng-dong ZHOU,Yun-fei XU,Jia-wen WANG,Wen-tao JI,Ze-feng SONG. Classification of imagined speech EEG signals based on feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 726-734.
[8] Hong-da CHENG,Hai-ming LUO,Qing-chao XIA,Can-jun YANG. Recognition of images for underwater vehicle based on improved γ-CLAHE algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1648-1655.
[9] Zhu-peng WEN,Jie CHEN,Lian-hua LIU,Ling-ling JIAO. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1212-1219.
[10] Pei-zhi WEN,Jun-mou CHEN,Yan-nan XIAO,Ya-yuan WEN,Wen-ming HUANG. Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 213-224.
[11] Hao-yuan WANG,Yu LIANG,Wei ZHANG. Real-time smoke segmentation algorithm fused with multi-resolution representation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2334-2341.
[12] Jing HUANG,Shu-yuan ZHONG,Yuan-qiao WEN,Kun LUO. Adaptive graph generation jump network for traffic flow prediction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1825-1833.
[13] Yun FEI,Tao MENG,Zhong-he JIN. Hierarchical fault detection for nano-pico satellite attitude control system[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 824-832.
[14] ZHANG Cheng-zhi, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Piecewise noise variance estimation of images based on wavelet transform[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1804-1810.
[15] CHEN Xue-jun, YANG Yong-ming. De-noising for vibration signals of wind power generator using empirical wavelet transform[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 988-995.