Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1353-1361    DOI: 10.3785/j.issn.1008-973X.2025.07.003
    
Traffic flow prediction based on time series decomposition and soft thresholding temporal convolution
Xinjian XIANG1(),Tianshun YUAN1,Yaqiang HE2,Chengli WANG2
1. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
2. Zhejiang Scientific Research Institute of Transport, Hangzhou 310039, China
Download: HTML     PDF(3074KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The high nonlinearity, strong temporal dependencies, feature redundancy, and noise in traffic flow data reduce the prediction accuracy of models. To address the challenges, a short-term traffic flow prediction algorithm was proposed. The algorithm integrated complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and a soft thresholding temporal convolutional network (STTCN). Historical traffic flow data were decomposed into high-frequency and low-frequency components using the CEEMDAN algorithm. A timestamp encoding was designed to process time information, and the maximum information coefficient (MIC) was used to examine the correlation of time and weather features with the two decomposed components. The most relevant features and their corresponding high and low-frequency components were input into the STTCN. A soft thresholding parameter, adjusted by the slime mould algorithm (SMA), was incorporated to enhance the network’s ability to handle high-noise data. The high and low-frequency components were reconstructed into traffic flow predictions. In a Zhejiang highway dataset, the proposed algorithm significantly outperforms baseline models, with reductions of 54.97% in mean squared error, 30.07% in root mean square error, and 34.39% in absolute deviation. Results show the proposed algorithm’s effectiveness in capturing the intricate dynamics of traffic flow.



Key wordsshort-term traffic flow prediction      soft thresholding temporal convolutional network      complete ensemble empirical mode decomposition with adaptive noise      timestamp encoding      maximal information coefficient     
Received: 02 July 2024      Published: 25 July 2025
CLC:  U 495  
Fund:  浙江省交通运输厅科技计划项目(2023013);浙江科技大学研究生科研创新基金资助项目(2023yjskc05).
Cite this article:

Xinjian XIANG,Tianshun YUAN,Yaqiang HE,Chengli WANG. Traffic flow prediction based on time series decomposition and soft thresholding temporal convolution. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1353-1361.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.003     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1353


基于时序分解和软阈值时间卷积的交通流预测

交通流数据的高度非线性、强时间依赖性、特征冗余和噪声会降低模型的预测精度,为此提出融合自适应噪声完备集合经验模态分解(CEEMDAN)和软阈值时间卷积网络(STTCN)的短时交通流预测算法. CEEMDAN算法将历史交通流数据分解为高频和低频成分. 设计时间戳编码处理时间信息,使用最大信息系数(MIC)分析时间和天气特征与分解成分的相关性. 将最相关特征与对应高、低频成分输入STTCN. 引入软阈值机制增强高噪声数据的处理能力,软阈值参数由黏菌优化算法(SMA)调整,将预测得到的高、低频成分重构为交通流预测结果. 在浙江省某高速公路数据集上,相较于基线模型,所提算法的均方误差、均方根误差和绝对偏差下降了54.97%、30.07%和34.39%. 结果表明,所提算法能有效捕捉交通流的复杂动态.


关键词: 短时交通流预测,  软阈值时间卷积网络,  自适应噪声完备集合经验模态分解,  时间戳编码,  最大信息系数 
Fig.1 Network structure of soft thresholding temporal convolutional network-slime mould algorithm
Fig.2 Structure of proposed traffic flow prediction algorithm
Fig.3 Decomposition results of complete ensemble empirical mode decomposition with adaptive noise
Fig.4 Heatmap of maximal information coefficient
Fig.5 Effect of number of high-frequency intrinsic mode function on prediction accuracy
模型MSESMAPE/%AD
SVR261.3813.6211.55
GRU283.8314.6012.40
LSTM268.0013.5911.68
RNN280.2113.7112.19
TCN261.2313.3011.46
E-T213.1312.6310.43
V-T161.7310.709.15
C-T132.249.778.33
C-M-T119.9010.558.06
C-M-S-G111.239.427.61
C-M-S-B103.329.147.36
C-M-S-S96.539.017.12
Tab.1 Performance evaluation indicators of different time-series prediction models
Fig.6 Comparison diagram of results of ablation experiment test sequence
类别$\eta_1 $$ \eta_2 $
高频模型0.1390
低频模型00
Tab.2 Soft threshold optimized by slime mould algorithm
Fig.7 Tab.7 High-frequency evaluation indicators of different decomposition models
[1]   王殿海, 谢瑞, 蔡正义 基于最优汇集时间间隔的城市间断交通流预测[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1607- 1617
WANG Dianhai, XIE Rui, CAI Zhengyi Prediction of urban interrupted traffic flow based on optimal convergence time interval[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1607- 1617
[2]   马飞, 杨治杰, 王江博, 等 基于气象-交通多通道数据融合的短时交通流速度预测模型[J]. 交通运输工程学报, 2024, 24 (6): 183- 196
MA Fei, YANG Zhijie, WANG Jiangbo, et al Short-term traffic flow velocity prediction model based on multi-channel data fusion of meteorological and traffic[J]. Journal of Traffic and Transportation Engineering, 2024, 24 (6): 183- 196
[3]   PRAVEEN KUMAR B, HARIHARAN K Time series traffic flow prediction with hyper-parameter optimized ARIMA models for intelligent transportation system[J]. Journal of Scientific and Industrial Research, 2022, 81 (4): 408- 415
[4]   ZHOU T, JIANG D, LIN Z, et al Hybrid dual Kalman filtering model for short-term traffic flow forecasting[J]. IET Intelligent Transport Systems, 2019, 13 (6): 1023- 1032
doi: 10.1049/iet-its.2018.5385
[5]   FANG W, ZHUO W, SONG Y, et al Δfree-LSTM: an error distribution free deep learning for short-term traffic flow forecasting[J]. Neurocomputing, 2023, 526: 180- 190
doi: 10.1016/j.neucom.2023.01.009
[6]   XIA D, CHEN Y, ZHANG W, et al RSAB-ConvGRU: a hybrid deep-learning method for traffic flow prediction[J]. Multimedia Tools and Applications, 2024, 83 (7): 20559- 20585
[7]   ZHANG R, SUN F, SONG Z, et al Short-term traffic flow forecasting model based on GA-TCN[J]. Journal of Advanced Transportation, 2021, 2021 (1): 1338607
[8]   BAO Y, HUANG J, SHEN Q, et al Spatial–temporal complex graph convolution network for traffic flow prediction[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 106044
doi: 10.1016/j.engappai.2023.106044
[9]   ZHAO Q, LOU L, OUYANG B. Short-time traffic flow prediction based on a combined model of EMD and LSTM [C]// Proceedings of the 4th International Seminar on Artificial Intelligence, Networking and Information Technology. Nanjing: IEEE, 2023: 424–429.
[10]   QIN Y, WU C, HU Y Traffic flow prediction by an ensemble framework with data denoising and functional principal components analysis[J]. Transportation Research Record: Journal of the Transportation Research Board, 2024, 2678 (11): 929- 947
doi: 10.1177/03611981241242375
[11]   SAHA S, BARAL S, HAQUE A. Optimizing Internet traffic predictions with a novel deep learning EMD-KNN framework [C]// Proceedings of the International Wireless Communications and Mobile Computing. Ayia Napa: IEEE, 2024: 1382–1387.
[12]   邴其春, 张伟健, 沈富鑫, 等 基于变分模态分解和LSTM的短时交通流预测[J]. 重庆理工大学学报: 自然科学, 2023, 37 (5): 169- 177
BING Qichun, ZHANG Weijian, SHEN Fuxin, et al Short-term traffic flow prediction based on variational modal decomposition and LSTM[J]. Journal of Chongqing University of Technology: Natural Science, 2023, 37 (5): 169- 177
[13]   孔思琴 基于VMD-HSSA-BP神经网络模型的短时交通流预测[J]. 电子设计工程, 2024, 32 (10): 1- 7
KONG Siqin Short-term traffic flow prediction based on VMD-HSSA-BP neural network model[J]. Electronic Design Engineering, 2024, 32 (10): 1- 7
[14]   庞学丽, 宋坤, 姚红云, 等 基于VMD-ISSA-LSTM的短时交通流预测研究[J]. 现代电子技术, 2024, 47 (8): 31- 36
PANG Xueli, SONG Kun, YAO Hongyun, et al Research on short-term traffic flow prediction based on VMD-ISSA-LSTM[J]. Modern Electronics Technique, 2024, 47 (8): 31- 36
[15]   RAN P, DONG K, LIU X, et al Short-term load forecasting based on CEEMDAN and transformer[J]. Electric Power Systems Research, 2023, 214: 108885
doi: 10.1016/j.jpgr.2022.108885
[16]   夏进, 王正群, 朱世明 基于时间序列分解的交通流量预测模型[J]. 计算机应用, 2023, 43 (4): 1129- 1135
XIA Jin, WANG Zhengqun, ZHU Shiming Traffic flow prediction model based on time series decomposition[J]. Journal of Computer Applications, 2023, 43 (4): 1129- 1135
[17]   WEI J, WU X, YANG T, et al Ultra-short-term forecasting of wind power based on multi-task learning and LSTM[J]. International Journal of Electrical Power and Energy Systems, 2023, 149: 109073
[18]   BAI S, KOLTER J Z, KOLTUN V, et al. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [EB/OL]. (2018−04−19)[2024−06−01]. https://arxiv.org/abs/1803.01271v2.
[19]   杨童亮, 胡东, 唐超, 等 基于SMA-VMD-GRU模型的变压器油中溶解气体含量预测[J]. 电工技术学报, 2023, 38 (1): 117- 130
YANG Tongliang, HU Dong, TANG Chao, et al Prediction of dissolved gas content in transformer oil based on SMA-VMD-GRU model[J]. Transactions of China Electrotechnical Society, 2023, 38 (1): 117- 130
[20]   王婧娟, 陈庆奎 一种时空注意力网络的交通预测模型[J]. 小型微型计算机系统, 2021, 42 (2): 303- 307
WANG Jingjuan, CHEN Qingkui Traffic prediction model based on spatiotemporal attention network[J]. Journal of Chinese Computer Systems, 2021, 42 (2): 303- 307
[1] Huizhi XU,Xiuqing WANG. Perception of distance and speed of front vehicle based on vehicle image features[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1219-1232.
[2] Li LI,Zhen-dong PING,Zhi-gang XU,Gui-ping WANG. Devices’ optimal deployment of roadside sensing system for expressway driving risk[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1137-1146.
[3] Wen-jin HUANG,Miao-hua HUANG. Double-layer fusion of lidar and roadside camera for cooperative localization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1369-1379.
[4] SUN Wen-cai, YANG Zhi-fa, LI Shi-wu, XU Yi, GUO Meng-zhu, WEI Xue-xin. Driver fixation area division oriented DBSCAN-MMC method[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1455-1461.
[5] LI Shi-wu, XU Yi, WANG Lin-hong, SUN Wen-cai, BIE Yi-ming. Gravitational search algorithm based adaptive low emission signal timing[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1313-1318.