Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (3): 496-503    DOI: 10.3785/j.issn.1008-973X.2025.03.007
    
Strength test and microscopic mechanism analysis of tung oil sticky rice-lime composite mortar
Xiaowu TANG1,2(),Qingqing XIANG1,2,Minliang FEI3,Keyi LI1,2,Guoping SUN4,Yue YU5
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Hangzhou 310058, China
3. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
4. Zhejiang Institute of Cultural Relics and Archaeology, Hangzhou 310014, China
5. School of Public Administration and Policy, Renmin University of China, Beijing 100086, China
Download: HTML     PDF(3546KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Orthogonal design was used to make composite mortar samples with different mass fraction ratios (moisture : tung oil : sticky rice : lime) for the tamping repair of earthen ruins. After one full year of on-site maintenance of the site, the reinforcement effects of tung oil, sticky rice pulp and lime on silt were evaluated by two mechanical indexes of shear strength, i. e. cohesion and internal friction angle, to obtain the optimal mass fraction ratios. Results showed that when the mass fraction ratio was 18 : 5 : 12 : 10, the cohesion was the largest. When the mass fraction ratio was 9 : 3 : 5 : 5, the internal friction angle was the largest. The intensity growth of the two groups of tung oil sticky rice-lime composite mortar was verified within 28 days, and the synergistic improvement mechanism of composite mortar was explored by scanning electron microscope, Fourier transform infrared spectroscopy and X-ray diffractometer. At the 28-day curing age, in terms of cohesion, the cohesion of the optimal mass fraction ratio specimen achieved 98.6% of the cohesion of the highest combination in the orthogonal experiment at the 1-year curing age; in terms of internal friction angle, the internal friction angle of the optimal mass fraction ratio specimen achieved 97.8% of the internal friction angle of the highest combination in the orthogonal experiment at the 1-year curing age. The results were applied locally to the soil of the site with stripping disease, and the results showed that the long-term restoration effect was good, and could provide some reference for the on-site restoration and protection of the soil site in the humid environment.



Key wordscomposite mortar      shear strength      orthogonal test      improved mechanism      microscopic mechanism     
Received: 06 January 2024      Published: 10 March 2025
CLC:  TU 46  
Fund:  浙江省文物保护科技资助项目(2023006).
Cite this article:

Xiaowu TANG,Qingqing XIANG,Minliang FEI,Keyi LI,Guoping SUN,Yue YU. Strength test and microscopic mechanism analysis of tung oil sticky rice-lime composite mortar. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 496-503.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.03.007     OR     https://www.zjujournals.com/eng/Y2025/V59/I3/496


桐油糯米复合灰浆强度试验及微观机理分析

为了土遗址的夯土修复,采用正交设计制作不同质量分数比(水∶桐油∶糯米浆∶石灰)的复合灰浆试样.经1 a遗址现场养护,以抗剪强度的2个力学指标(黏聚力、内摩擦角)评价桐油、糯米浆、石灰对粉土的加固效果,以获得最优质量分数比. 结果表明:当复合灰浆质量分数比为18∶5∶12∶10时,黏聚力最大;当质量分数比为9∶3∶5∶5时,内摩擦角最大. 对2组最优质量分数比的桐油糯米复合灰浆开展28 d内强度增长验证,利用扫描电子显微镜、傅里叶变换红外光谱、X射线衍射仪探究复合灰浆的协同改良机理. 2组复合灰浆在28 d龄期中,在黏聚力方面,最优质量分数比试样的黏聚力达到了正交试验最高组合1a龄期的98.6%;在内摩擦角方面,最优质量分数比试样的内摩擦角达到了正交试验最高组合1a龄期的97.8%. 结果被应用于发生剥离病害的遗址土体,获得了良好的加固效果,能为潮湿环境土遗址现场修复和保护提供参考.


关键词: 复合灰浆,  抗剪强度,  正交试验,  改良机理,  微观机制分析 
Fig.1 Raw materials for composite mortar
参数数值参数数值
GS2.7wP/%24.2
wo/%20.48c/kPa14.1
ρ/(g·cm?31.59φ/(°)26.4
wL/%33.3
Tab.1 Basic parameters of experimental Hangzhou silt [15]
外观Drsv/
(mg·g?1
$\eta $/
(mPa·s)
TKA/%
透明液体0.9350~
0.9395
190~199200~350≥80
Tab.2 Performance indicators of raw tung oil[16]
外观分子式相对分子质量粒径/μm酸碱性
白色粉末Ca(OH)274.091~2强碱
Tab.3 Basic performance parameters of slaked lime
Fig.2 Site on-site conservation photo and environment parameters
水平因素
wW/%wT/%wR/%wL/%
112122
214244
316366
418488
52051010
62261212
72471414
Tab.4 Factors and level tables of test
Fig.3 Mass fractions of different levels for each factor
水平Kc)/kPa$\bar{k} $c)/kPa
wWwTwRwLwWwTwRwL
1388.85168.63309.61305.8355.5524.0944.2343.69
2351.61210.49321.72324.150.2330.0745.9646.30
3474.18267.05327.25329.3567.7438.1546.7547.05
4534.59388.71342.44380.4576.3755.5348.9254.35
5313.88526.4383.6405.3744.8475.2054.8057.91
6203.07433.58389.55371.6329.0161.9455.6553.09
7193.48464.87385.49342.9327.6466.4155.0748.99
Tab.5 Results of range analysis of cohesion
水平K$(\varphi)/\text{ (°)} $$\bar{k}(\varphi)/\text{ (°)} $
wWwTwRwLwWwTwRwL
1133.6395.76111.37115.6419.0913.6815.9116.52
2130.55104.02111.51112.9118.6514.8615.9316.13
3132.72110.81121.45119.3518.9615.8317.3517.05
4151.27111.65125.16118.6521.6115.9517.8816.95
5126.35144.34131.39130.6218.0520.6218.7718.66
693.17145.11128.1128.3113.3120.7318.318.33
786.73142.8125.51129.0112.3920.417.9318.43
Tab.6 Results of range analysis of internal friction angle
Fig.4 Effect graph of shear strength
方差来源SE/(kPa)2f$ {\sigma }^{2} $/(kPa)2FP
wW14055.9562342.6614.21显著
wT16003.7562667.2916.18显著
wR991.856165.311.01
wL1077.496179.581.09
e3957.2824164.87
总计36086.3249
Tab.7 Results of variance analysis of cohesion
方差来源SE/(°)2f$ {\sigma }^{2} $/(°)2FP
wW467.09677.8520.17显著
wT387.51664.5816.74显著
wR52.9568.832.29
wL43.6267.271.89
e92.61243.86
总计17522.8949
Tab.8 Results of variance analysis of internal friction angle
Fig.5 SEM images of tung oil sticky rice-lime composite mortar at different ages
Fig.6 Phase semiquantitative analysis of tung oil sticky rice-lime composite mortar
Fig.7 FTIR patterns of tung oil sticky rice-lime composite mortar at different ages
Fig.8 Shear strength of tung oil sticky rice-lime composite mortar at different ages
Fig.9 On-site restoration of exfoliated earth body
[1]   PAN C, CHEN K, CHEN D, et al Research progress on in-situ protection status and technology of earthen sites in moisty environment[J]. Construction and Building Materials, 2020, 253: 119219
doi: 10.1016/j.conbuildmat.2020.119219
[2]   唐晓武, 费敏亮, 俞悦, 等 雨季降水对浙江井头山深埋土遗址地下水位的影响[J]. 浙江大学学报: 工学版, 2022, 56 (3): 598- 606
TANG Xiaowu, FEI Minliang, YU Yue, et al Influence of rainy season precipitation on groundwater level of Jingtoushan deep-buried earthen site in Zhejiang Province[J]. Journal of Zhejiang University (Engineering Science), 2022, 56 (3): 598- 606
[3]   魏国锋, 张秉坚, 杨富巍, 等 钙基液态水硬性加固剂用于潮湿土遗址的加固保护[J]. 岩土力学, 2012, 33 (3): 702- 712
WEI Guofeng, ZHANG Bingjian, YANG Fuwei, et al Consolidation of historical earthen sites under moisture circumstance using calcium-based hydraulic consolidant[J]. Rock and Soil Mechanics, 2012, 33 (3): 702- 712
doi: 10.3969/j.issn.1000-7598.2012.03.009
[4]   STEMPKOWSKA A, MASTALSKA-POPŁAWSKA J, IZAK P, et al Stabilization of kaolin clay slurry with sodium silicate of different silicate moduli[J]. Applied Clay Science, 2017, 146: 147- 151
[5]   张克文. SH加固含有机质遗址土工程性质研究[D]. 兰州: 兰州大学, 2018.
ZHANG Kewen. Study of engineering properties in conversation of humus-containing soil of earthen sites with SH[D]. Lanzhou: Lanzhou University, 2018.
[6]   ZHANG C, ZHANG B, CUI B High hydrophobic preservation materials can cause damage to tabia relics[J]. Progress in Organic Coatings, 2020, 145: 105683
doi: 10.1016/j.porgcoat.2020.105683
[7]   魏国锋, 方世强, 李祖光, 等 桐油灰浆材料的物理性能与显微结构[J]. 建筑材料学报, 2013, 16 (3): 469- 474
WEI Guofeng, FANG Shiqiang, LI Zuguang, et al Physical properties and microscopic structure of Tung oil-lime putty[J]. Journal of Building Materials, 2013, 16 (3): 469- 474
doi: 10.3969/j.issn.1007-9629.2013.03.016
[8]   范岩. 土遗址保护材料的应用与效果研究: 评《土遗址保护材料探索: 非水分散体材料研制及土遗址加固研究》[EB/OL](2020-09-15)[2023-05-17]. https://kns.cnki.net/kcms2/article/abstract?v=CdHX_LbaUYwq2jOX1Iz0OzRRkdJGk4DSD6KyGlxee9sjOw499QMdRFIWiz-rjjRQwfQKM3_qpVtsmF0AqMeADRCYPJ9cDD6nCvJsJ1WgaruBMpSvULVwHidduOXNlEcHqxQO-UpCcGwkyfic0HJqhm0ZW2XTvFdD8h94895dWSFf2v7X5Ot6ui9u6iHZEIGj&uniplatform=NZKPT&language=CHS.
[9]   易识远, 魏国锋, 张秉坚, 等 中国传统三合土材料配方的试验研究[J]. 西北民族大学学报: 自然科学版, 2019, 40 (4): 31- 41
YI Shiyuan, WEI Guofeng, ZHANG Bingjian, et al Experimental study on the recipes of traditional Tabia of China[J]. Journal of Northwest University for Nationalities: Natural Science Edition, 2019, 40 (4): 31- 41
[10]   李佳佳. 中国传统复合灰浆的认识研究[D]. 杭州: 浙江大学, 2019.
LI Jiajia. Research and cognition of Chinese traditional composite mortars [D]. Hangzhou: Zhejiang University, 2019.
[11]   石庆红, 杨秀娟, 赵之, 等 工业废渣-过硫酸钠协同固化/稳定化石油污染土配比优选研究[J]. 中国环境科学, 2023, 43 (4): 1791- 1801
SHI Qinghong, YANG Xiujuan, ZHAO Zhi, et al Optimization ratio of industrial waste and sodium persulfate for synergy in solidification/stabilization of petroleum-contaminated soil[J]. China Environmental Science, 2023, 43 (4): 1791- 1801
[12]   唐晓武, 林廷松, 罗雪, 等 利用桐油和糯米汁改善黏土的强度及环境土工特性[J]. 岩土工程学报, 2007, 29 (9): 1324- 1329
TANG Xiaowu, LIN Tingsong, LUO Xue, et al Strength and geoenvironmental properties of clay improved by tung oil and sticky rice Juice[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (9): 1324- 1329
doi: 10.3321/j.issn:1000-4548.2007.09.008
[13]   张雅文. 有机物对氧化钙碳化过程及性能的影响[D]. 西安: 陕西科技大学, 2012.
ZHANG Yawen. Effect of organic matter on the carbonation process and the performance of calclum oxide [D]. Xi’an: Shaanxi University of Science and Technology, 2012.
[14]   杨富巍, 张秉坚, 曾余瑶, 等 传统糯米灰浆科学原理及其现代应用的探索性研究[J]. 故宫博物院院刊, 2008, 139 (5): 105- 114
YANG Fuwei, ZHANG Bingjian, ZENG Yuyao, et al Exploratory research on the scientific nature and application of traditional sticky rice mortar[J]. Palace Museum Journal, 2008, 139 (5): 105- 114
[15]   FEI M, TANG X W, YU Y, et al. Synergistic improvement earthen mortars with tung oil, sticky rice pulp, and aerial lime: application for the conservation of rammed earth structures damaged by exfoliation[J]. International Journal of Architectural Heritage , 2024, 18(10): 1519–1534.
[16]   中国林业出版社 . 中华人民共和国林业行业标: Y/T 2865——2017 [S]. 北京: 国家林业局, 2017.
[17]   MEIORIN C, ARANGUREN M I, MOSIEWICKI M A Vegetable oil/styrene thermoset copolymers with shape memory behavior and damping capacity[J]. Polymer International, 2012, 61 (5): 735- 742
doi: 10.1002/pi.3231
[18]   唐晓武, 王艳, 林廷松, 等 桐油和糯米汁改良土体防渗性和耐久性的研究[J]. 岩土工程学报, 2010, 32 (3): 351- 355
TANG Xiaowu, WANG Yan, LIN Tingsong, et al Permeability and durability of soils improved by tung oil and sticky rice juice[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (3): 351- 355
[19]   TESTER R F, KARKALAS J, QI X Starch: composition, fine structure and architecture[J]. Journal of Cereal Science, 2004, 39 (2): 151- 165
doi: 10.1016/j.jcs.2003.12.001
[20]   YU L, CHRISTIE G Microstructure and mechanical properties of orientated thermoplastic starches[J]. Journal of Materials Science, 2005, 40 (1): 111- 116
doi: 10.1007/s10853-005-5694-1
[21]   中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123——2019 [S]. 北京: 中国计划出版社, 2019.
[22]   杨清清, 何鑫, 李琼芳, 等 不同固化方式对碳酸酐酶矿化菌固化砂土效果影响研究[J]. 工业建筑, 2018, 48 (7): 38- 43
YANG Qingqing, HE Xin, LI Qiongfang, et al Study of effects of different cementing methods for carbonic anhydrase mineralized bacteria on cementation of sand soil[J]. Industrial Construction, 2018, 48 (7): 38- 43
[23]   甘化民, 张一平 陕西五种土壤红外光谱特征的初步研究[J]. 土壤学报, 1992, 29 (2): 232- 236
GAN Huamin, ZHANG Yiping Preliminary study on the characteristics of infrared spectrum of five soils in Shaanxi[J]. Acta Pedologica Sinica, 1992, 29 (2): 232- 236
[24]   陈和生, 孙振亚, 邵景昌 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30 (4): 934- 937
CHEN Hesheng, SUN Zhenya, SHAO Jingchang Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society, 2011, 30 (4): 934- 937
[25]   范文军. 糯米浆-石灰复合材料固化遗址土吸水与失水特性研究[D]. 兰州: 兰州大学, 2021.
FAN Wenjun. Study on water absorption and water loss characteristics of soil consolidated by sticky rice-lime composites for earthen site[D]. Lanzhou: Lanzhou University, 2021.
[26]   陈晓东, 吴景贵, 李建明, 等 有机物料施用下原生盐碱土胡敏酸结构特征[J]. 土壤学报, 2020, 57 (3): 702- 709
CHEN Xiaodong, WU Jinggui, LI Jianming, et al Structural characteristics of humic acid in primary saline-alkali soil as affected by application of organic materials[J]. Acta Pedologica Sinica, 2020, 57 (3): 702- 709
doi: 10.11766/trxb201904030131
[1] Muyuan SONG,Yijiang WANG,Wei YANG,Fengfei LANG,Wei CHEN,Xueying LIU. Impermeability and shear strength of phosphogypsum-based impermeable materials under drying-wetting cycles[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1902-1911.
[2] Junyi DUAN,Junjiang WU,Yu SU,Zhitao LV,Yuliang LIN,Guolin YANG. Shear strength characteristics of shallow expansive soil and its fiber improved soil[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 547-556.
[3] Wei WANG,Shuai-shuai HUANG,Wen-jie YU,Xu-ming CHE,Na LI. Direct shear mechanical behavior of cement stabilized road solid waste modified by fibers and nanomaterials[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1727-1735.
[4] Zhi-jian WANG,Shun-zhong LONG,Ying-hong LI. Combination optimization of induction control parameters based on orthogonal test[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1128-1136.
[5] Yi-min XIA,Yu-hang LANG,Zhi-yong JI,Yong REN. Βearing performance of integrated cutter holder structure suitable for robot cutter change[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 392-403.
[6] Hao SUN,Kun-lin TANG,Ai-bing JIN,Mei-chen LIU,Shuai-jun CHEN,Mu-ya LI. Experimental study on influence of single coarse particle on shear properties of ore-rock particle system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2037-2048.
[7] Yang XUE,Yi-ping WU,Fa-sheng MIAO,Lin-wei LI. Back analysis of shear strength parameters of sliding surface by using combination method of random field and Bayes theory[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1118-1127.
[8] Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.
[9] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[10] XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 1-10.
[11] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1499-1508.
[12] WANG Qiang, JIN Ling-zhi, CAO Xia, LV Hai-bo. Experimental study on shear performance of reactive powder concrete beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 922-930.
[13] XIE Lu xin, HU Jin bing, WU Jian feng, WANG Jun. Virtual experimental research on tail-breaking mechanism of whole-stalk sugarcane harvester[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1662-1670.
[14] PEI Xiao peng,WANG Guo lin,ZhOU Hai chao,ZhAO Fan. Influence of tread design parameters on tire vibration noise[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 871-878.
[15] LI Zhi-ning, HAN Tong-chun, DOU Hong-qiang, QIU Zi-yi. Analysis of torque on helical soil nail drilling into strata[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1426-1433.