Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (8): 1647-1658    DOI: 10.3785/j.issn.1008-973X.2024.08.012
    
Combined optimization of lane-based control and signal timing at parallel flow intersection
Lang SONG1,2(),Jian WANG1,3,*(),Lu YANG1,Shi AN1
1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
2. National Engineering and Research Center for Mountainous Highways, Chongqing 400067, China
3. School of Management, Harbin Institute of Technology, Harbin 150001, China
Download: HTML     PDF(1824KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A combined optimization method for lane control and signal timing was proposed in order to enhance the flexibility of parallel flow intersections in practical application. Sixteen configurations including one-way, asymmetric two-way, symmetric two-way, three-way, and four-way settings with directional arrangements were integrated into an optimization model, and phase sequences were automatically generated by modifying the traffic conflict matrix. A mixed integer linear programming model was developed to optimize the intersection setting selection, lane allocation, and signal timing in combination. Results show that the symmetric two-way, three-way, and four-way settings increase traffic capacity by approximately 20%, 20%, and 50% respectively compared to conventional intersections under various traffic scenarios. The capacities of the one-way and asymmetric two-way settings are close to those of conventional intersections, indicating that one-way and asymmetric two-way settings are not suitable for parallel flow intersections. The four-way setting exhibits the largest increase in capacity, with a maximum improvement of 70.51%. The traffic capacities of symmetric two-way and three-way settings are similar, while the three-way setting performs better in asymmetric traffic scenarios than the symmetric two-way setting.



Key wordstraffic engineering      control method      mixed integer linear programming      parallel flow intersection      displaced left-turn     
Received: 18 July 2023      Published: 23 July 2024
CLC:  U 491  
Fund:  重庆市自然科学基金资助项目(CSTB2023NSCQ-MSX0387);重庆市技术创新与应用发展专项重点资助项目(CSTB2022TIAD-KPX0104);国家自然科学基金重大研究计划资助项目(91846301).
Corresponding Authors: Jian WANG     E-mail: lang_song@qq.com;wang_jian@hit.edu.cn
Cite this article:

Lang SONG,Jian WANG,Lu YANG,Shi AN. Combined optimization of lane-based control and signal timing at parallel flow intersection. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1647-1658.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.08.012     OR     https://www.zjujournals.com/eng/Y2024/V58/I8/1647


平行流交叉口车道控制与信号配时组合优化

为了提升平行流交叉口实际应用的灵活性,提出车道控制与信号配时组合优化方法,将单向、非对称双向、对称双向、三向、四向设置与布设方向组合共16种方案整合到优化模型中,通过修正交通冲突矩阵自动生成相位相序方案. 构建混合整数线性规划模型,实现交叉口设置方案选择、车道分配和信号配时的组合优化. 结果表明,在各种流量场景下,对称双向、三向、四向设置方案相较于常规交叉口分别能够提升约20%、20%、50%的通行能力,单向、非对称双向设置方案通行能力与常规交叉口接近,说明平行流交叉口不宜采用单向、非对称双向设置. 四向设置方案通行能力的提升幅度最大,最大值能达到70.51%. 对称双向和三向设置方案的通行能力提升相差不大,但三向设置在不对称流量场景中的表现优于对称双向设置.


关键词: 交通工程,  控制方法,  混合整数线性规划,  平行流交叉口,  移位左转 
Fig.1 Diagram of geometric design and traffic flow organization at parallel flow intersection
Fig.2 Diagram of traffic conflict for each flow direction at conventional intersection
Fig.3 Preliminary signal green wave diagram for displaced left-turn
参数数值参数数值参数数值
$ {P_1} $106$ {P_2} $103$ {P_3} $1
$ {g_{\min }} $/s10$ \gamma $/s4$ M $106
$ {C_{\min }} $/s60$ {C_{\max }} $/s120$ {d_{i,j}} $/(m·pcu?1)7
$ {b_{\min }} $/s10$ {L_{j,{\text{DLT}}}} $/m100$ {s_{i,j}} $/(pcu·h?1)1 500
$ {N_j} $10$ {\upsilon _i} $/(km·h?1)30
Tab.1 Input parameter and value for optimization model in case
Fig.4 Intersection geometric design optimization result for scheme
设置方案$ t $主信号西预信号南预信号东预信号北预信号C
1234567823456781
常规交叉口启亮时刻58800185880018120
绿灯时长1836143618361436
结束时刻80018588001858
单向启亮时刻0222289022678010850120
绿灯时长18415427184118365854
结束时刻2267800226789050108
非对称双向启亮时刻0222280802262801044629103120
绿灯时长183654365836143658547042
结束时刻226280022628004610410329
对称双向启亮时刻5390901753909017390390120
绿灯时长334343323343433277357735
结束时刻9017175390171753039039
三向启亮时刻034347777343477102604610310260120
绿灯时长3039393973393939743853597438
结束时刻34777703477770601021034660102
四向启亮时刻600060600060894329103894329103120
绿灯时长56565656565656567042704270427042
结束时刻060600060600438910329438910329
Tab.2 Intersection signal timing optimization result for scheme s
设置方案常规设计可展宽常规设计不可展宽常规设计可展宽
$ \mu $$ {\varphi _1} $/%$ B $/s$ \mu $$ {\varphi _1} $/%$ B $/s$ V $/(pcu·h?1)$ \phi $/s$ {\varphi _2} $/%
常规交叉口1.13029.390.92927.247 19243.24
单向1.125?0.4832.321.0007.6931.237 19443.991.73
非对称双向1.125?0.4834.291.08316.6732.127 19841.07?5.02
对称双向1.35019.4235.731.28638.4638.567 19137.13?14.13
三向1.2278.5738.681.22732.1736.977 20035.95?16.86
四向1.75054.8147.601.75088.4647.607 19728.33?34.48
Tab.3 Comparative results of intersection evaluation indicator for scheme
序号X轴参数及
取值范围
Y轴参数及取值范围Z轴参数备注
1左转比例10%~50%单向流量倍数增加(西向与南向、东向、
北向的流量比值)1.0~2.0
通行能力提升比例,
以常规交叉口为基准
南向、东向、北向流量相同
2非对称双向流量倍数增加(西向、南向与东向、
北向的流量比值)1.0~2.0
西向、南向流量相同,东向、北向流量相同
3对称双向流量倍数增加(西向、东向与南向、
北向的流量比值)1.0~2.0
西向、东向流量相同,南向、北向流量相同
4三向流量倍数增加(西向、南向、东向与
北向的流量比值)1.0~2.0
西向、南向、东向流量相同
Tab.4 Parameter design for X, Y and Z axes in experimental cases
Fig.5 Traffic capacity enhancement, one-way flow multiplier and left turn ratio for scheme
Fig.6 Traffic capacity enhancement, asymmetric two-way flow multiplier and left turn ratio for scheme
Fig.7 Traffic capacity enhancement, symmetric two-way flow multiplier and left turn ratio for scheme
Fig.8 Traffic capacity enhancement, three-way flow multiplier and left turn ratio for scheme
[1]   EL E M, SAYED T Analysis of unconventional arterial intersection designs (UAIDs): state-of-the-art methodologies and future research directions[J]. Transportmetrica A: Transport Science, 2013, 9 (10): 860- 895
doi: 10.1080/18128602.2012.672344
[2]   卢凯, 尹帅帅, 江书妍, 等 考虑交织路段掉头车流的邻近交叉口信号协调控制[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1618- 1628
LU Kai, YIN Shuaishuai, JIANG Shuyan, et al Coordinated signal control for adjacent intersections considering U-turn movements at interweaving road sections[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1618- 1628
[3]   WU J, LIU P, ZHOU Y, et al Stationary condition based performance analysis of the contraflow left-turn lane design considering the influence of the upstream intersection[J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102919
doi: 10.1016/j.trc.2020.102919
[4]   郭满, 梅振宇, 章立辉 自动车轨迹优化以实现分转向车流串联交叉口控制[J]. 浙江大学学报: 工学版, 2020, 54 (2): 275- 282
GUO Man, MEI Zhenyu, ZHANG Lihui Trajectory optimization of connected and autonomous vehicles to achieve tandem intersection control[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (2): 275- 282
[5]   ALZOUBAIDI M, ZLATKOVIC M Operational assessment of continuous flow intersections in a connected vehicle environment[J]. Transportation Planning and Technology, 2022, 45 (6): 524- 543
doi: 10.1080/03081060.2022.2136177
[6]   STEYN H, BUGG Z, RAY B, et al. Displaced left turn intersection: informational guide [R]. Washington DC: U. S. Federal Highway Administration, 2014.
[7]   邓明君, 朱腾洲 移位左转交叉口研究进展[J]. 科学技术与工程, 2021, 21 (1): 10- 19
DENG Mingjun, ZHU Tengzhou Research progress on displaced left-turn intersection[J]. Science Technology and Engineering, 2021, 21 (1): 10- 19
[8]   安实, 宋浪, 王健, 等 非常规交叉口设计研究现状与展望[J]. 交通运输工程学报, 2020, 20 (4): 1- 20
AN Shi, SONG Lang, WANG Jian, et al Research status and prospect of unconventional arterial intersection design[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (4): 1- 20
[9]   DHATRAK A, EDARA P, BARED J G Performance analysis of parallel flow intersection and displaced left-turn intersection designs[J]. Transportation Research Record, 2010, 2171 (1): 33- 43
doi: 10.3141/2171-04
[10]   CHEONG S, RAHWANJI S, CHANG G L. Comparison of three unconventional arterial intersection designs: continuous flow intersection, parallel flow intersection, and upstream signalized crossover [C]// 11th International IEEE Conference on Intelligent Transportation Systems . New York: IEEE, 2008: 1-7.
[11]   PARSONS G F The parallel flow intersection: a new two-phase signal alternative[J]. ITE Journal, 2007, 77 (10): 28- 32
[12]   安实, 宋浪, 王健, 等 平行流交叉口信号控制策略及效益分析[J]. 交通运输系统工程与信息, 2020, 20 (3): 75- 82
AN Shi, SONG Lang, WANG Jian, et al Signal control strategy and benefit analysis of parallel flow intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (3): 75- 82
[13]   宋浪, 胡晓伟, 杨滨毓, 等 平行流交叉口左转非机动车钩形转弯优化设计[J]. 哈尔滨工业大学学报, 2023, 55 (3): 1- 9
SONG Lang, HU Xiaowei, YANG Binyu, et al Optimization design for left-turn non-motor vehicle crossing at parallel flow intersection with hook-turn[J]. Journal of Harbin Institute of Technology, 2023, 55 (3): 1- 9
doi: 10.11918/202111105
[14]   ABO-BAKR S, ESAWEY M E, OSAMA A Operational and safety performance evaluation of parallel flow intersection[J]. Transportation Research Record, 2022, 2676 (6): 61- 74
doi: 10.1177/03611981211070283
[15]   ZHAO J, MA W, HEAD K L, et al Optimal operation of displaced left-turn intersections: a lane-based approach[J]. Transportation Research Part C: Emerging Technologies, 2015, 61: 29- 48
doi: 10.1016/j.trc.2015.10.012
[16]   王旭, 安文娟, 王少飞, 等 T型交叉口移位左转几何设计及信号配时优化[J]. 公路交通技术, 2022, 38 (6): 149- 155
WANG Xu, AN Wenjuan, WANG Shaofei, et al Geometric design and signal timing optimization of displaced left-turn at T-shaped intersection[J]. Technology of Highway and Transport, 2022, 38 (6): 149- 155
[17]   赵靖, 徐海军, 高幸, 等 连续流交叉口左转非机动车优化设计方法[J]. 交通运输系统工程与信息, 2018, 18 (6): 178- 186
ZHAO Jing, XU Haijun, GAO Xing, et al Optimization design method of left-turn bicycles crossing for continuous flow intersections[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (6): 178- 186
[18]   JIANG X, GAO S Signal control method and performance evaluation of an improved displaced left-turn intersection design in unsaturated traffic conditions[J]. Transportmetrica B: Transport Dynamics, 2020, 8 (1): 264- 289
doi: 10.1080/21680566.2020.1764410
[19]   YANG X, CHENG Y Development of signal optimization models for asymmetric two-leg continuous flow intersections[J]. Transportation Research Part C: Emerging Technologies, 2017, 74: 306- 326
doi: 10.1016/j.trc.2016.11.021
[20]   SUN W, WU X, WANG Y, et al A continuous-flow-intersection-lite design and traffic control for oversaturated bottleneck intersections[J]. Transportation Research Part C: Emerging Technologies, 2015, 56: 18- 33
doi: 10.1016/j.trc.2015.03.011
[21]   WONG C K, HEYDECKER B G Optimal allocation of turns to lanes at an isolated signal-controlled junction[J]. Transportation Research Part B: Methodological, 2011, 45 (4): 667- 681
doi: 10.1016/j.trb.2010.12.001
[22]   安实, 宋浪, 王健, 等 平行流交叉口行人过街控制策略研究[J]. 交通运输系统工程与信息, 2020, 20 (5): 64- 71
AN Shi, SONG Lang, WANG Jian, et al Pedestrian crossing control strategy for parallel flow intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (5): 64- 71
[23]   徐海军 考虑自行车交通的非常规交叉口通行优化设计方法[J]. 交通与运输, 2021, 37 (3): 21- 25
XU Haijun Optimization design method for bicycles at tandem unconventional arterial intersections[J]. Traffic and Transportation, 2021, 37 (3): 21- 25
doi: 10.3969/j.issn.1671-3400.2021.03.006
[1] Peng LIU,Qingchang LU,Han QIN,Xin CUI. Road network multi-stage disaster resistance optimization model and its application[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 96-108.
[2] Kai LU,Shuai-shuai YIN,Shu-yan JIANG,Zhi-jie ZHOU,Qing LI. Coordinated signal control for adjacent intersections considering U-turn movements at interweaving road sections[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1618-1628.
[3] Yi-yong PAN,Xing-yu GUAN. Stochastic optimal velocity car-following model based on quantile regression[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1553-1559.
[4] Yue HOU,Cheng-yan HAN,Xin ZHENG,Zhi-yuan DENG. Traffic flow data repair method based on spatial-temporal fusion graph convolution[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1394-1403.
[5] Jia-jie YU,Yan-jie JI,Qing BU,Yue-biao ZHENG. Partitioned green-wave control scheme for long arterial considering breakpoint cost[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 640-648.
[6] Ning-bo CAO,Li-ying ZHAO. Decision-making method of autonomous vehicles for right of way on road segments[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 118-127.
[7] Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.
[8] Kai LU,Xin TIAN,Guan-rong LIN,Xing-dong DENG. Simultaneous optimization model of signal phase design and timing at intersection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 921-930.
[9] Jia-qi ZENG,Dian-hai WANG. Improved numerical method for two-way arterial signal coordinate control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2386-2394.
[10] Si-jia ZHANG,Shun-ping JIA,Bao-hua MAO,Cun-rui MA,Tong ZHANG. Influence of passenger trip distance distribution on competitiveness of bus lines in urban rail transit network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 292-298.
[11] GONG Yue, LUO Xiao-Qin, WANG Dian-hai, YANG Shao-hui. Urban travel time prediction based on gradient boosting regression tress[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 453-460.
[12] SU Zi-peng, YANG Lei, YANG Jia-qiang, GAO Min. Switch control method based on switch table decision of hybrid system composed of APF and TSC[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2201-2209.
[13] SHANG Qiang, LIN Ci-yun, YANG Zhao-sheng, BING Qi-chun, XING Ru-ru. Traffic incident detection based on variable selection and kernel extreme learning machine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1339-1346.
[14] WANG Han qi, CHEN Hong, FENG Wei, LIU Wei wei. Multi-dimensional travel decision model of heterogeneous commuters based on Cumulative Prospect Theory[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 297-303.
[15] YU De-xin, TIAN Xiu-juan, YANG Zhao-sheng, ZHOU Xi-yang, CHENG Ze-yang. Improved arterial coordinated signal control optimization model[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2019-2029.