|
|
Stochastic optimal velocity car-following model based on quantile regression |
Yi-yong PAN( ),Xing-yu GUAN |
College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China |
|
|
Abstract The optimized velocity function was improved based on quantile-regression method, in order to study the influence of traffic flow heterogeneity on car-following behavior. The parameters of the improved optimized velocity function were calibrated according to the actual traffic flow data, and the hypothesis test of the parameter results was carried out. Combined with the improved optimized velocity function and the full speed difference car-following model, a stochastic optimized velocity car-following model was established, and the stability conditions of the car-following model were deduced by using Fourier transform theory. A loop lane simulation platform was built to carry out numerical experiments on the car-following model. Results show that the improved optimized velocity function can better reflect the impact of traffic flow heterogeneity on traffic flow. There was a positive correlation between the time when the single quantile team reached the stable state and the quantile. The time to reach steady state was decreased with the increase of the number of vehicles at 0.5 quantile in the multi quantile fleet. Compared with the single quantile fleet, the proposed multi quantile fleet can truly reflect the complex operation of traffic flow.
|
Received: 17 August 2021
Published: 30 August 2022
|
|
Fund: 国家自然科学基金资助项目(51508280);南京林业大学高学历人才基金资助项目(GXL2014031) |
基于分位数回归的随机优化速度跟驰模型
为了研究交通流异质性对车辆跟驰行为的影响,基于分位数回归方法改进优化速度函数. 根据实际交通流数据对改进的优化速度函数进行参数标定,并对参数结果进行假设检验,结合改进的优化速度函数和全速度差跟驰模型建立随机优化速度跟驰模型,利用傅里叶变换理论推导跟驰模型的稳定性条件,并搭建环形车道仿真平台对跟驰模型进行数值实验. 结果表明:改进的优化速度函数能更好地反映交通流异质性对交通流的影响;单一分位点车队达到稳定状态的时间与分位点呈正相关;多分位点组合车队随着0.5分位点车辆数的增加,达到稳定状态的时间减少. 提出的多分位点车队相比于单一分位点车队可以更真实地反映交通流复杂的运行状况.
关键词:
交通工程,
跟驰模型,
非线性分位数回归,
优化速度函数,
交通流理论
|
|
[1] |
NEWLL G F Nonlinear effects in the dynamics of car following[J]. Operations Research, 1961, 9 (2): 209- 229
doi: 10.1287/opre.9.2.209
|
|
|
[2] |
BANDO M, HASEBE K, NAKAYAMA A, et al Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51 (2): 1035- 1042
doi: 10.1103/PhysRevE.51.1035
|
|
|
[3] |
HELBING D, TILCH B Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58 (1): 133- 138
doi: 10.1103/PhysRevE.58.133
|
|
|
[4] |
姜锐, 吴清松 交通流复杂动态特性的微观和宏观模式研究[J]. 中国科学院研究生院学报, 2006, 23 (6): 848- 854 JIANG Rui, WU Qing-song Study on the complex dynamic properties of traffic flow from the micro and macro modelling[J]. Journal of Graduate School of the Chinese Academy of Sciences, 2006, 23 (6): 848- 854
|
|
|
[5] |
王涛, 高自有, 赵小梅 多速度差模型及稳定性分析[J]. 物理学报, 2006, 55 (2): 634- 640 WANG Tao, GAO Zi-you, ZHAO Xiao-mei Multiple velocity difference model and its stability analysis[J]. Acta Physia Sinica, 2006, 55 (2): 634- 640
doi: 10.3321/j.issn:1000-3290.2006.02.028
|
|
|
[6] |
葛红霞, 崔煜, 程荣军 考虑前后车效应的反馈控制跟驰模型[J]. 物理学报, 2014, 63 (11): 103- 109 GE Hong-xia, CUI Yu, CHENG Rong-jun A car-following model with considering control signals from front and rear[J]. Acta Physia Sinica, 2014, 63 (11): 103- 109
doi: 10.7498/aps.63.110504
|
|
|
[7] |
杨龙海, 赵顺, 徐洪 基于改进优化速度函数的跟驰模型研究[J]. 交通运输系统工程与信息, 2017, 17 (2): 41- 46+47 YANG Long-hai, ZHAO Shun, XU Hong Car-following model based on the modified optimal velocity function[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17 (2): 41- 46+47
doi: 10.16097/j.cnki.1009-6744.2017.02.007
|
|
|
[8] |
ZHANG L, ZHANG S R, ZHOU B, et al An improved car-following model considering desired safety distance and heterogeneity of driver’s sensitivity[J]. Journal of Advanced Transportation, 2021, (1): 1- 12
|
|
|
[9] |
JIN S, WANG D H, TAO P F, et al Non-lane-based full velocity difference car following model[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389 (21): 4654- 4662
doi: 10.1016/j.physa.2010.06.014
|
|
|
[10] |
WANG H, LI Y, WANG W, et al Optimal velocity model with dual boundary optimal velocity function[J]. Transportmetrica B: Transport Dynamics, 2016, 5 (2): 211- 227
|
|
|
[11] |
WENG J X, GAN X F, DU G Random coefficient models for work zone headway distribution[J]. Journal of Transportation Engineering, Part A. Systems, 2019, 145 (10): 1- 7
|
|
|
[12] |
CHENG J Y, HUANG S C, TZENG S J Quantile regression methods for left-truncated and right-censored data[J]. Journal of Statistical Computation and Simulation, 2016, 86 (3): 443- 459
doi: 10.1080/00949655.2015.1016433
|
|
|
[13] |
TRANSGUIDE. Texas Department of Transportation [EB/OL]. [2021-08-01]. http://www.transguide.dot.state.tx.us/.
|
|
|
[14] |
王殿海. 交通流理论[M]. 北京: 人民交通出版社, 2002: 11-12.
|
|
|
[15] |
管星宇, 潘义勇 基于随机参数线性回归的交通流速度-密度关系模型研究[J]. 森林工程, 2021, 37 (5): 90- 95 GUAN Xing-yu, PAN Yi-yong Research on traffic flow speed-density model based on random-parameter linear regression[J]. Forest Engineering, 2021, 37 (5): 90- 95
doi: 10.3969/j.issn.1006-8023.2021.05.012
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|