Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (8): 1596-1603    DOI: 10.3785/j.issn.1008-973X.2024.08.007
    
Effect of ultrasonic dispersion time on shape memory performance of GO-CF reinforced SMPC
Chen SONG1(),Yuqin MA1,*(),Ou RUAN2,Jin XU3,Xinran LIU1,Simeng LIU1
1. Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an 710064, China
2. Viridi E-Mobility Technology (Ningbo) Limited Company, Ningbo 315000, China
3. Polar Krypton Automobile (Ningbo Hangzhou Bay New Area) Limited Company, Ningbo 315336, China
Download: HTML     PDF(1819KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Six groups of GO-CF hybrid reinforced SMPC with different ultrasonic dispersion time were prepared by using vacuum infiltration hot pressing system in order to analyze the effect of ultrasonic dispersion time on the microstructure and shape memory performance of shape memory polymer composites (SMPC). The microstructure morphology of SMPC was characterized by scanning electron microscopy, and shape memory performance tests were conducted. Results show that appropriate ultrasonic dispersion time can peel GO into sheet-like structures and disperse uniformly in SMPC, forming mechanical interlocking and chemical bonding. The shape fixation ratio and shape recovery ratio of SMPC show a trend of first increasing and then decreasing with the increase of ultrasonic dispersion time. The mean recovery ratio of other SMPC shows a trend of first decreasing and then increasing except for 30 minutes. SMPC exhibits the best shape memory performance when the ultrasonic dispersion time is 60 minutes, with shape fixation ratio and shape recovery ratio reaching 97.85% and 97.30% respectively, maximum recovery force of 10.47 N, mean shape recovery ratio of 1.04°/s. The increase of this composite structure of mechanical interlocking and chemical bonding is beneficial to enhance the shape memory performance of SMPC, but more energy is required to achieve the shape recovery of SMPC.



Key wordsultrasonic dispersion time      vacuum infiltration hot pressing system      graphene oxide      carbon fiber      shape memory performance     
Received: 14 September 2023      Published: 23 July 2024
CLC:  TB 332  
Fund:  公共大数据国家重点实验室开放基金资助项目(PBD 2022-019);长安大学中央高校基本科研业务费专项资金资助项目(300102253105);陕西省自然科学基础研究计划资助项目(2022JM-265);教育部产学合作协同育人项目(220506298133407);河南省高等学校重点科研项目计划资助项目(23A460033).
Corresponding Authors: Yuqin MA     E-mail: chen-song@chd.edu.cn;yqma@chd.edu.cn
Cite this article:

Chen SONG,Yuqin MA,Ou RUAN,Jin XU,Xinran LIU,Simeng LIU. Effect of ultrasonic dispersion time on shape memory performance of GO-CF reinforced SMPC. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1596-1603.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.08.007     OR     https://www.zjujournals.com/eng/Y2024/V58/I8/1596


超声分散时间对GO-CF增强SMPC形状记忆性能的影响

为了研究超声分散时间对形状记忆聚合物复合材料(SMPC)微观组织和形状记忆性能的影响,采用真空浸渗热压工艺制备6组不同超声分散时间的GO-CF混杂增强SMPC,通过扫描电子显微镜表征SMPC的微观组织形貌,开展形状记忆性能的测试. 结果表明,适当的超声分散时间可以将GO剥离成片状结构并均匀分散在SMPC中,形成机械联锁和化学键合. 随着超声分散时间的增加,SMPC的形状固定率和形状回复率呈现先增大后减小的趋势,除30 min外,其他SMPC的平均回复速率呈现先减小后增大的趋势,当超声分散60 min时,SMPC具有最佳的形状记忆性能,形状固定率和形状回复率分别达到97.85%和97.30%,最大回复力为10.47 N,平均形状回复速率为1.04°/s,机械联锁和化学键合这种复合结构的增加有利于增强SMPC的形状记忆性能,但需要更多的能量来实现SMPC的形状回复.


关键词: 超声分散时间,  真空浸渗热压工艺,  氧化石墨烯,  碳纤维,  形状记忆性能 
Fig.1 Schematic diagram of GO-CF hybrid-enhanced SMPC immobilization process
Fig.2 Schematic diagram of GO-CF hybrid-enhanced SMPC reply process
Fig.3 Microscopic morphology of GO-CF hybrid-enhanced SMPC ultrasonically dispersed for 70 min
Fig.4 Microstructure morphology of CF surface with different ultrasonic dispersion time
Fig.5 Schematic diagram of mechanical interlock
Fig.6 Shape fixation ratio of SMPC with different ultrasonic dispersion time
Fig.7 Shape recovery ratio of SMPC with different ultrasonic dispersion time
Fig.8 Crack generation and extension of delamination in specimens dispersed by ultrasonic dispersion for 30 min
Fig.9 Schematic diagram of crosslinked structure of composite material
Fig.10 Temperature-recovery force of composites with different ultrasonic dispersion time
Fig.11 Mean recovery ratio of SMPC with different ultrasonic dispersion time
[1]   LIU Y, DU H, LIU L, et al Shape memory polymers and their composites in aerospace applications: a review[J]. Smart Materials and Structures, 2014, 23 (2): 023001
doi: 10.1088/0964-1726/23/2/023001
[2]   XIA Y, HE Y, ZHANG F, et al A review of shape memory polymers and composites: mechanisms, materials, and applications[J]. Advanced Materials, 2021, 33 (6): 2000713
doi: 10.1002/adma.202000713
[3]   张豆, 刘彦菊, 冷劲松 纤维增强形状记忆聚合物复合材料及其航天应用[J]. 复合材料学报, 2021, 38 (3): 698- 711
ZHANG Dou, LIU Yanju, LENG Jinsong Fiber reinforced shape memory polymer composites and their applications in aerospace[J]. Acta Materiae Compositae Sinica, 2021, 38 (3): 698- 711
[4]   ZARE M, PRABHAKARAN M P, PARVIN N, et al Thermally-induced two-way shape memory polymers: mechanisms, structures, and applications[J]. Chemical Engineering Journal, 2019, 374: 706- 720
doi: 10.1016/j.cej.2019.05.167
[5]   KHALID M Y, ARIF Z U, NOROOZI R, et al 4D printing of shape memory polymer composites: a review on fabrication techniques, applications, and future perspectives[J]. Journal of Manufacturing Processes, 2022, 81: 759- 797
doi: 10.1016/j.jmapro.2022.07.035
[6]   马玉钦, 赵亚涛, 许威, 等 高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展及发展趋势[J]. 复合材料学报, 2020, 37 (10): 2367- 2375
MA Yuqin, ZHAO Yatao, XU Wei, et al Research status and development trend of high thermal conductivity graphene-carbon fiber hybrid reinforced shape memory plastic composite[J]. Acta Materiae Compositae Sinica, 2020, 37 (10): 2367- 2375
[7]   SALES R C M, GUSMAO S R, GOUVEA R F, et al The temperature effects on the fracture toughness of carbon fiber/RTM-6 laminates processed by VARTM[J]. Journal of Composite Materials, 2017, 51 (12): 1729- 1741
doi: 10.1177/0021998316679499
[8]   JANG J H, HONG S B, KIM J G, et al Accelerated testing method for predicting long-term properties of carbon fiber-reinforced shape memory polymer composites in a low earth orbit environment[J]. Polymers, 2021, 13 (10): 1628
doi: 10.3390/polym13101628
[9]   ERKMEN B, BAYRAM G Influence of nanocomposite preparation techniques on the multifunctional properties of carbon fabric-reinforced polystyrene-based composites with carbon nanotubes[J]. SPE Polymers, 2022, 3 (3): 163- 175
doi: 10.1002/pls2.10078
[10]   LI F, SCARPA F, LAN X, et al Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 116: 169- 179
doi: 10.1016/j.compositesa.2018.10.037
[11]   MA Y, WANG J, ZHAO Y, et al A new vacuum pressure infiltration CFRP method and preparation experimental study of composite[J]. Polymers, 2020, 12 (2): 419
doi: 10.3390/polym12020419
[12]   WANG C, LI J, YU J, et al Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 511- 520
doi: 10.1016/j.compositesa.2017.07.015
[13]   LIU F, SHI Z, DONG Y Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 337- 345
doi: 10.1016/j.compositesa.2018.06.026
[14]   XU L, ZHAO J, SHI M, et al Thermodynamic properties of TPI shape memory polymer composites reinforced by GO/SiO2 modified carbon fiber[J]. Composites Science and Technology, 2022, 226: 109551
doi: 10.1016/j.compscitech.2022.109551
[15]   BAI Y, ZHANG J, WEN D, et al A reconfigurable, self-healing and near infrared light responsive thermoset shape memory polymer[J]. Composites Science and Technology, 2020, 187: 107940
doi: 10.1016/j.compscitech.2019.107940
[16]   WANG E, DONG Y, ISLAM M D Z, et al Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites[J]. Composites Science and Technology, 2019, 169: 209- 216
doi: 10.1016/j.compscitech.2018.11.022
[17]   CHEN L, ZHANG Y, LIU Z, et al Effect of graphene oxide doping on anti-/deicing performance of shape memory epoxy resin[J]. Materials Today Communications, 2022, 30: 103025
doi: 10.1016/j.mtcomm.2021.103025
[18]   LI F, MA Y, XU Y, et al Effect of graphite oxide content on shape memory performance of graphite oxide-carbon fiber hybrid reinforced shape memory polymer composites by VIHPS[J]. Polymers for Advanced Technologies, 2022, 33 (12): 4265- 4277
doi: 10.1002/pat.5857
[19]   MA Y, CHEN Y, LI F, et al Effect of fiber mass fraction on microstructure and properties of 2D CF-GO/EP composite prepared by VIHPS[J]. Nanomaterials, 2022, 12 (7): 1184
doi: 10.3390/nano12071184
[20]   YAVARI F, RAFIEE M A, RAFIEE J, et al Dramatic increase in fatigue life in hierarchical graphene composites[J]. ACS Applied Materials and Interfaces, 2010, 2 (10): 2738- 2743
doi: 10.1021/am100728r
[21]   范圣男, 杨振国 纳米SiO2/MC尼龙复合材料的制备与性能研究[J]. 复旦学报: 自然科学版, 2020, 59 (1): 90- 96
FAN Shengnan, YANG Zhenguo Preparation and properties evaluation of MC nylon/nano-SiO2 composite[J]. Journal of Fudan University: Natural Science, 2020, 59 (1): 90- 96
[22]   ZHANG X, FAN X, YAN C, et al Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials and Interfaces, 2012, 4 (3): 1543- 1552
doi: 10.1021/am201757v
[23]   RAFIEE M A, RAFIEE J, SRIVASTAVA I, et al Fracture and fatigue in graphene nanocomposites[J]. Small, 2010, 6 (2): 179- 183
doi: 10.1002/smll.200901480
[24]   LIU J, WANG Z, LI S, et al A novel graphene oxide/trans-1, 4-polyisoprene (GO/TPI) shape memory polymer nanocomposite and its multifunctional properties[J]. Nanotechnology, 2019, 30 (25): 255706
doi: 10.1088/1361-6528/ab0868
[1] Lin HONG,Cong-cong LUAN,Xin-hua YAO,Ning-guo DONG,Yu-yang JI,Cheng-cheng NIU,Ze-quan DING,Xue-yu SONG,Jian-zhong FU. In-situ additive manufacturing equipment and technology of carbon fiber composites[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2119-2126.
[2] Li-ning YANG,Yong-di ZHANG,Jin-ye WANG,Hong-jie CHANG,Guang YANG. Additive manufacturing process of continuous carbon fiber reinforced metal matrix composites[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2084-2090.
[3] Zhi-qiang WU,Jun WEI,Rong-zhen DONG. Graphene-based piezoresistive composite and application in crack monitoring[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 233-240.
[4] LUAN Cong-cong, YAO Xin-hua, LIU Cheng-zhe, FU Jian-zhong. Carbon fiber-thermoplastic composite 3D printing technology and its self-monitoring[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1808-1814.
[5] WANG Xiao,YAO Xiao-li,HOU Jian-feng,FAN Li-wu,XU Xu,YU Zi-tao,HU Ya-cai. Non-isothermal crystallization of aqueous graphene oxide suspensions[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1272-1277.
[6] CHEN Yue-chao, ZHOU Xiao-jun, YANG Chen-long, LI-Zhao.
Microstructure and feature of pores for corner of L-shape CFRP components
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1775-1880.
[7] ZHUGE Ping, DING Yong, HOU Su-wei, QIANG Shi-zhong.
Optimization design and fatigue test of new CFRP tendon anchor assembly
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1822-1827.
[8] WANG Bao-jun, BI Liu-xin, CHEN Liang-liang, YANG Ping-xi, ZHU Chang-sheng. Strength analysis of a surface mounted high speed permanent magnetic machine rotor with carbon fiber bandage[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2101-2110.
[9] YANG Jian-tao, PAN Hua, CHEN Jie, SU Qing-fa, WANG Da-hui, SHI Yao. Two-stage system of non-thermal plasma and adsorption for
decomposition of hydrogen sulfide
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2411-2415.