|
|
Intelligent identification of asphalt pavement cracks based on semantic segmentation |
Yan-ze YANG1( ),Meng WANG1,*( ),Cheng LIU2,Hui-tong XU1,Xiao-yue ZHANG1 |
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China 2. China Road Transportation Verification and Inspection Hi-Tech Co Ltd., Beijing 100088, China |
|
|
Abstract An intelligent method of asphalt pavement crack recognition based on semantic segmentation was proposed, solving the shortcomings of traditional manual inspection of asphalt pavement, such as low efficiency and lack of objectivity. Considering the effects of data set size, algorithm type, network type and depth, and loss function type, the optimal crack intelligent identification scheme and corresponding model were proposed for both large and small scale data sets through the comparative study of 22 semantic segmentation models. Based on the asphalt pavement of sixth ring road in Beijing, the crack segmentation dataset R-Crack was established. The proposed intelligent identification scheme was verified and the crack parameters were automatically quantified. Results showed that the highest detection accuracy reached 83.45%. The average errors of crack length and width were 2.84% and 2.39% respectively by comparing the calculation results of crack parameters obtained through manual and automatic detection methods, The proposed intelligent recognition scheme provided a basis for the intelligent detection practice of asphalt pavement cracks in the expressway and other scenes.
|
Received: 05 December 2022
Published: 18 October 2023
|
|
Fund: 中央高校基本科研业务费专项资金资助项目(2022YJS071);北京市科技新星计划资助项目(20220484103);北京市自然科学基金资助项目(8222027) |
Corresponding Authors:
Meng WANG
E-mail: 21121139@bjtu.edu.cn;wangmeng@bjtu.edu.cn
|
基于语义分割的沥青路面裂缝智能识别
针对传统的沥青路面人工检测效率低、缺乏客观性的弊端,提出基于语义分割的沥青路面裂缝智能识别方法. 综合考虑数据集规模、算法种类、网络种类及深度、损失函数类型的影响,对 22 个语义分割模型开展对比研究,提出适用于较大、较小规模数据集的优选裂缝智能识别方案及对应模型. 基于北京六环高速公路沥青路面,建立裂缝分割数据集R-Crack,对提出的智能识别方案进行应用检验,并自动量化裂缝参数. 结果表明:检测准确率最高达到83.45%,通过对比人工及自动化检测方式获得的裂缝参数计算结果,裂缝长度和宽度平均误差分别为2.84%和2.39%,提出的智能识别方案为高速公路等场景下沥青路面裂缝的智能检测实践提供依据.
关键词:
沥青路面检测,
交并比,
语义分割,
裂缝识别,
卷积神经网络
|
|
[1] |
交通运输部 2020年全国收费公路统计公报[J]. 交通财会, 2021, (11): 93- 96 Ministry of Transport 2020 national toll road statistics bulletin[J]. Transportation Finance and Accounting, 2021, (11): 93- 96
|
|
|
[2] |
徐鹏, 祝轩, 姚丁, 等 沥青路面养护智能检测与决策综述[J]. 中南大学学报: 自然科学版, 2021, 52 (7): 2099- 2117 XU Peng, ZHU Xuan, YAO Ding, et al Review on intelligent detection and decision-making of asphalt pavement maintenance[J]. Journal of Central South University: Science and Technology, 2021, 52 (7): 2099- 2117
|
|
|
[3] |
马建, 赵祥模, 贺拴海, 等 路面检测技术综述[J]. 交通运输工程学报, 2017, 17 (5): 121- 137 MA Jian, ZHAO Xiang-mo, HE Shuan-hai, et al Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (5): 121- 137
doi: 10.3969/j.issn.1671-1637.2017.05.012
|
|
|
[4] |
交通运输部公路研究院. 公路技术状况评定标准: JTG 5210-2018 [S]. 北京: 人民交通出版社, 2018: 17-21.
|
|
|
[5] |
交通运输部公路研究院. 公路路面技术状况自动化检测规程: JTGT E61-2014 [S]. 北京: 人民交通出版社, 2014: 11-14.
|
|
|
[6] |
黎蔚, 朱平哲 沥青路面裂缝图像检测算法研究[J]. 计算机工程与应用, 2012, 48 (19): 163- 166 LI Wei, ZHU Ping-zhe Image detection algorithm research for asphalt pavement crack[J]. Computer Engineering and Applications, 2012, 48 (19): 163- 166
doi: 10.3778/j.issn.1002-8331.2012.19.037
|
|
|
[7] |
翁飘, 陆彦辉, 齐宪标, 等. 基于改进的全卷积神经网络的路面裂缝分割技术[J]. 计算机工程与应用, 2019, 55(16): 235-239. WENG Piao, LU Yan-hui, QI Xian-biao, et al. Pavement crack segmentation technology based on improved fully convolutional networks [J]. Computer Engineering and Applications. 2019, 55(16): 235-239.
|
|
|
[8] |
赵颖. 基于卷积神经网络的沥青路面裂缝图像筛选与分割[D]. 石家庄: 石家庄铁道大学, 2021: 9-13. ZHAO Ying. Pavement crack segmentation technology based on improved fully convolutional networks [D]. Shijiazhuang: Shijiazhuang Railway University, 2021: 9-13.
|
|
|
[9] |
唐由之. 基于卷积神经网络的沥青路面裂缝智能识别算法研究[D]. 成都: 西南交通大学, 2021: 13-22. TANG You-zhi. Research on intelligent cracks detection algorithm of asphalt pavement based on convolutional neural network [D]. Chengdu: Southwest Jiaotong University, 2021: 13-22.
|
|
|
[10] |
HSIEH Y A, TSAI Y J Machine learning for crack detection: review and model performance comparison[J]. Journal of Computing in Civil Engineering, 2021, 34 (5): 04020038
|
|
|
[11] |
田萱, 王亮, 丁琪 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30 (2): 440- 468 TIAN Xuan, WANG Liang, DING Qi Overview of image semantic segmentation methods based on deep learning[J]. Journal of Software, 2019, 30 (2): 440- 468
doi: 10.13328/j.cnki.jos.005659
|
|
|
[12] |
李刚, 高振阳, 张新春, 等 改进的全局卷积网络在路面裂缝检测中的应用[J]. 激光与光电子学进展, 2020, 57 (8): 111- 119 LI Gang, GAO Zhen-yang, ZHANG Xin-chun, et al Application of improved global convolution network in pavement crack detection[J]. Progress in Laser and Optoelectronics, 2020, 57 (8): 111- 119
|
|
|
[13] |
陈泽斌, 罗文婷, 李林. 基于改进U-net模型的路面裂缝智能识别[J]. 数据采集与处理. 2020, 35(2): 260-269. CHEN Ze-bin, LUO Wen-ting, LI Lin. Automatic identification of pavement crack using improved U-net model [J]. Journal of Data Acquisition and Processing, 2020, 35(2): 260-269.
|
|
|
[14] |
阙云, 季雪, 蒋子平, 等. GAN数据增强下路面裂缝语义分割算法[EB/OL]. (2022-07-08) [2022-12-04]. http://doi.org/10.13229/j.cnki.jdxbgxb20220003. QUE Yun, JI Xue, JIANG Zi-ping, et al. Semantic segmentation algorithm of pavement cracks based on GAN data augmentation [EB/OL]. (2022-07-08)[2022-12-04]. http://doi.org/10.13229/j.cnki.jdxbgxb20220003.
|
|
|
[15] |
ZHANG A, WANGK C P, FEI Y, et al Automated pixe mmevel pavement crack detection on 3D asphalt surfaces with a recurrent neural network[J]. Computer Aided Civil and Infrastruc Ture Engineering, 2018, 34 (3): 213- 229
|
|
|
[16] |
XIANG X, ZHANG Y, SADDIK ABDULMOTALEB S Pavement crack detection network based on pyramid structure and attention mechanism[J]. IET Image Processing, 2020, 14 (8): 1580- 1586
doi: 10.1049/iet-ipr.2019.0973
|
|
|
[17] |
YANG F, LEI Z, SIJIA Y, et al Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, (4): 1525- 1535
|
|
|
[18] |
韩晓健, 赵志成 基于计算机视觉技术的结构表面裂缝检测方法研究[J]. 建筑结构学报, 2018, 39 (增1): 418- 427 HAN Xiao-jian, ZHAO Zhi-cheng Structural surface crack detection method based on computer vision technology[J]. Journal of Building Structures, 2018, 39 (增1): 418- 427
doi: 10.14006/j.jzjgxb.2018.S1.055
|
|
|
[19] |
周颖, 刘彤 基于计算机视觉的混凝土裂缝识别[J]. 同济大学学报: 自然科学版, 2019, 47 (9): 1277- 1285 ZHOU Ying, LIU Tong Computer vision-based crack detection and measurement on concrete structure[J]. Journal of Tongji University: Natural Science, 2019, 47 (9): 1277- 1285
|
|
|
[20] |
孟诗乔, 张啸天, 乔甦阳, 等 基于深度学习的网格优化裂缝检测模型研究[J]. 建筑结构学报, 2020, 41 (增2): 404- 410 MENG Shi-qiao, ZHAO Xiao-tian, QIAO Su-yang, et al Research on grid optimized crack detection model based on deep learning[J]. Journal of Building Structures, 2020, 41 (增2): 404- 410
doi: 10.14006/j.jzjgxb.2020.S2.0045
|
|
|
[21] |
丁威, 俞珂, 舒江鹏 基于深度学习和无人机的混凝土结构裂缝检测方法[J]. 土木工程学报, 2021, 54 (增1): 1- 12 DING Wei, YU Ke, SHU Jiang-peng Method for detecting cracks in concrete structures based on deep learning and UAV[J]. Journal of Civil Engineering, 2021, 54 (增1): 1- 12
|
|
|
[22] |
CSURKA G, PERRONNIN F An efficient approach to semantic segmentation[J]. International Journal of Computer Vision, 2011, 95 (2): 198- 212
doi: 10.1007/s11263-010-0344-8
|
|
|
[23] |
EVERINGHAM M, ESLAMI S M, GOOL L V, et al The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111 (1): 98- 136
doi: 10.1007/s11263-014-0733-5
|
|
|
[24] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context [C]// Computer Vision–ECCV. Zürich: SIP, 2014: 740-755.
|
|
|
[25] |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding [C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2039-2047.
|
|
|
[26] |
EISENBACH M, STRICKER R, SEICHTER D, et al. How to get pavement distress detection ready for deep learning? a systematic approach [C]// International Joint Conference on Neural Networks. Anchorage: IEEE, 2017: 2039−2047.
|
|
|
[27] |
LEON B, FRANK E C, JORGE N Optimization methods for large-scale machine learning[J]. Siam Review, 2018, 60 (2): 223- 311
|
|
|
[28] |
任凤雷, 何昕, 魏仲慧, 等 基于DeepLabV3+与超像素优化的语义分割[J]. 光学精密工程, 2019, 27 (12): 2722- 2729 REN Feng-lei, HE Xin, WEI Zhong-hui Semantic segmentation based on DeepLabV3+ and super pixel optimization[J]. Optics and Precision Engineering, 2019, 27 (12): 2722- 2729
|
|
|
[29] |
于桐, 吴文瑾, 刘海江, 等 基于改进U-Net网络与联合损失函数的海南自然保护区高分辨率遥感变化检测模型[J]. 中国环境监测, 2021, 37 (5): 194- 200 YU Tong, WU Wen-jin, LIU Jiang-hai, et al Remote sensing change detection model of Hainan nature reserves based on improved U-Net and joint loss function[J]. Environmental Monitoring in China, 2021, 37 (5): 194- 200
|
|
|
[30] |
LIN T Y, GOYAL P, GIRSHICK R, et al Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327
|
|
|
[31] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770−778.
|
|
|
[32] |
SANDLER M, HOCARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510−4520.
|
|
|
[33] |
张晋赫, 秦育罗, 张在岩, 等 复杂场景下农村道路裂缝分割方法[J]. 测绘通报, 2022, 66 (5): 74- 78 ZHANG Jin-he, QIN Yu-luo, ZHANG Zai-yan, et al Rural road crack segmentation method in complex scene[J]. Bulletin of Surveying and Mapping, 2022, 66 (5): 74- 78
|
|
|
[34] |
汪德佳. 基于计算机视觉方法的古建筑变形监测[D]. 北京: 北京交通大学, 2022: 67−68. Wang De-jia. Deformation monitoring of ancient buildings based on computer vision methods [D]. Beijing: Beijing Jiaotong University, 2022: 67−68.
|
|
|
[35] |
刘宇飞. 基于模型修正与图像处理的多尺度结构损伤识别[D]. 北京: 清华大学, 2015: 188−189. LIU Yu-fei. Multi-scale structural damage assessment based on model updating and image processing [D]. Beijing: Tsinghua University, 2015: 188−189.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|