|
|
UAV dense small target detection algorithm based on YOLOv5s |
Jun HAN( ),Xiao-ping YUAN*( ),Zhun WANG,Ye CHEN |
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China |
|
|
Abstract The dense small target detection algorithm LSA_YOLO based on YOLOv5s for UAVs with complex backgrounds and multiples of small targets with dense distribution was proposed for UAV images. A multi-scale feature extraction module LM-fem was constructed to enhance the feature extraction capability of the network. A new hybrid domain attention module S-ECA relying on multi-scale contextual information has been put forward and a algorithm focus on target information was established aiming to suppress the interference of complex backgrounds. The adaptive weight dynamic fusion structure AFF was designed to assign reasonable fusion weights to both shallow and deep features. The capability of algorithm in detecting dense small targets in complex backgrounds was improved given the application of S-ECA and AFF in the structure of PANet. The loss function Focal-EIOU was utilized instead of the loss function CIOU to accelerate model detection efficiency. Experimental results on the public dataset VisDrone2021 public dataset show that the average detection accuracy for all target classes improves from 51.5% for YOLOv5s to 57.6% for LSA_YOLO when the set input resolution is set to 1 504 × 1 504.
|
Received: 24 June 2022
Published: 30 June 2023
|
|
Fund: 国家科技支撑计划资助项目(2013BAK06B08); 国家自然科学基金资助项目(32171241) |
Corresponding Authors:
Xiao-ping YUAN
E-mail: m19816250697@163.com;1941@cumt.edu.cn
|
基于YOLOv5s的无人机密集小目标检测算法
针对无人机图像中背景复杂、小目标数量多且分布密集的特点,提出基于YOLOv5s的无人机密集小目标检测算法LSA_YOLO. 构造多尺度特征提取模块LM-fem,增强网络的特征提取能力. 为了抑制复杂背景的干扰,使算法关注目标信息,提出依靠多尺度上下文信息的、新的混合域注意力模块S-ECA. 设计自适应权重动态融合结构AFF,为浅层特征和深层特征合理分配融合权重. 将S-ECA、AFF应用于PANet结构,提高算法在复杂背景下的密集小目标检测能力. 使用损失函数Focal-EIOU代替损失函数CIOU,增强模型检测性能. 在公开数据集VisDrone2021上的实验结果表明,当设置输入分辨率为1 504 $ \times $1 504时,对所有目标类别的平均检测精度从YOLOv5s的51.5%提高到LSA_YOLO的57.6%.
关键词:
无人机,
小目标检测,
多尺度特征,
注意力机制,
特征融合
|
|
[1] |
奉志强, 谢志军, 包正伟, 等 基于改进 YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44 (3): 327106 FENG Zhi-qiang, XIE Zhi-jun, BAO Zheng-wei, et al Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (3): 327106
|
|
|
[2] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
|
|
[3] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
|
|
|
[4] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2022-06-20]. https://arxiv.org/abs/1804.02767.
|
|
|
[5] |
BOCHKOVSKIY A, WANG C Y, LIA O H. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2022-06-20]. https://arxiv.org/abs/2004.10934.
|
|
|
[6] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. [S.l.]: Springer, 2016: 21-37.
|
|
|
[7] |
李科岑, 王晓强, 林浩, 等 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16 (1): 41- 58 LI Ke-cen, WANG Xiao-qiang, LIN Hao, et al Survey of one-stage small object detection methods in deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (1): 41- 58
|
|
|
[8] |
XIE L C, XUE Y L, YE J Z. UAV aerial photography target detection algorithm based on improved YOLOv5 [C]// Journal of Physics: Conference Series. [S.l.]: IOP Publishing, 2022, 2284(1): 012024.
|
|
|
[9] |
YANG Y Z. Drone-view object detection based on the improved YOLOv5 [C]// Proceedings of the IEEE International Conference on Electrical Engineering, Big Data and Algorithms. Changchun: IEEE, 2022: 612-617.
|
|
|
[10] |
吴萌萌, 张泽斌, 宋尧哲, 等. 基于自适应特征增强的小目标检测网络[J/OL]. 激光与光电子学进展, 2023, 60(6): 0610004. [20222-06-20]. https://www.opticsjournal.net/Articles/OJ7e6f90484b1776fd/References. WU Meng-meng, ZHANG Ze-bin, SONG Yao-zhe, et al. Small object detection network based on adaptive feature enhancement [J/OL]. Advances in Laser and Opt-oelectronics, 2023, 60(66): 0610004. [2022-06-20]. https://www.opticsjournal.net/Articles/OJ7e6f90484b1776fd/References.
|
|
|
[11] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
|
|
[12] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
|
|
|
[13] |
LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation [EB/OL]. [2022-06-20]. https://arxiv.org/abs/1805.10180.
|
|
|
[14] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759–8768.
|
|
|
[15] |
ZHANG Y F, REN W, ZHANG Z, et al Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146- 157
doi: 10.1016/j.neucom.2022.07.042
|
|
|
[16] |
LI Y , CHEN Y , WANG N , et al. Scale-aware trident networks for object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6054-6063.
|
|
|
[17] |
CHEN C, ZHANG Y, LV Q, et al. RRNet: a hybrid detector for object detection in drone-captured images [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 100-108.
|
|
|
[18] |
ZHOU X, WANG D, KRAHENBUHL P. Objects as points [EB/OL]. [2022-06-20]. https://arxiv.org/abs/1904.07850.
|
|
|
[19] |
ALI S, SIDDIQUE A, ATES H F, et al. Improved YOLOv4 for aerial object detection [C]// Proceedings of the 29th Signal Processing and Communications Applications Conference. Istanbul: IEEE, 2021: 1-4.
|
|
|
[20] |
ZHAO H, ZHOU Y, ZHANG L, et al Mixed YOLOv3-LITE: a lightweight real-time object detection method[J]. Sensors, 2020, 20 (7): 1861
doi: 10.3390/s20071861
|
|
|
[21] |
DU D W, WEN L Y, ZHU P F, et al. VisDrone-DET2020: the vision meets drone object detection in image challenge results [C]// Proceedings of the European Conference on Computer Vision. [S.l.]: Springer, 2020: 692-712.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|