Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 178-189    DOI: 10.3785/j.issn.1008-973X.2023.01.018
    
Double RSA accumulator based stateless transaction verification scheme
Jin-sheng YANG1(),Hao WANG1,Zhen GAO2,*(),Zhao-hui GUO1
1. School of Microelectronics, Tianjin University, Tianjin 300072, China
2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Download: HTML     PDF(1321KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A double RSA accumulator based stateless transaction verification scheme was proposed for the UTXO-model blockchain such as Bitcoin in order to release the storage burden in each node brought by the growing state data in blockchain. Fixed-size cryptographic commitments were used to replace the state data, which dramatically reduced the local storage on the basis of ensuring that nodes can independently verify transactions. The complicated delete operation was replaced by two efficient addition operations based on the properties of the RSA accumulator, which greatly reduced the computational overheads of the system at the cost of less communication overheads and ensured the efficiency of the transaction verification. The experimental results show that the scheme has a higher node storage compression ratio than the traditional blockchain, and has a fixed additional communication overhead and higher transaction verification efficiency than other stateless schemes.



Key wordsblockchain      UTXO      RSA accumulator      state storage      transaction validation     
Received: 15 July 2022      Published: 17 January 2023
CLC:  TP 301  
Corresponding Authors: Zhen GAO     E-mail: jsyang@tju.edu.cn;zgao@tju.edu.cn
Cite this article:

Jin-sheng YANG,Hao WANG,Zhen GAO,Zhao-hui GUO. Double RSA accumulator based stateless transaction verification scheme. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 178-189.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.018     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/178


基于双RSA累加器的无状态交易验证方案

为了缓解区块链中不断膨胀的状态数据给节点带来的存储压力,针对以比特币为代表的UTXO模型区块链,提出基于双RSA累加器的无状态交易验证方案. 该方案利用固定大小的密码学承诺取代状态数据,在保证节点能够独立验证交易的基础上,大幅降低本地存储. 基于RSA累加器的特性,利用2次高效的添加操作替换了复杂的删除操作,以较少的通信开销为代价,大幅降低系统的计算开销,保证交易验证的效率. 实验结果表明,该方案相比于传统的区块链拥有较高的节点存储压缩率,相比于其他无状态方案拥有固定的额外通信开销及较高的交易验证效率.


关键词: 区块链,  UTXO,  RSA累加器,  状态存储,  交易验证 
Fig.1 Data structure of transaction in UTXO-model blockchain
Fig.2 Lifecycle of transaction in stateful blockchain
Fig.3 Lifecycle of transaction in stateless blockchain
Fig.4 Overview of double RSA accumulator based stateless transaction verification scheme
Fig.5 Data structure of transaction in stateless UTXO-model blockchain
方案 累加器体制 额外开销(bits/UTXO)
Todd[21] 默克尔树 256log2 m
EDRAX[22] 默克尔树 256log2 M
Boneh[25] 单RSA b
MiniChain[26] RSA+默克尔树 2b+256log2 n +256log2 h
本文方案 双RSA 3b
Tab.1 Communication overheads brought by each UTXO
方案 验证见证 更新承诺 生成见证 更新见证
Todd O(log2 m) O((ki +ko)log2 m) O(log2 m) O((ki +ko)log2 m)
EDRAX O(log2 M) O((ki +ko) log2 M) O(log2 M) O((ki +ko) log2 M)
Boneh O(1) O(ki2 +ko) O(ko) O(ki +ko)
MiniChain O(1)+O(log2 ko+log2 h) O(ki)+O(log2 h) O(ko)+O(log2 ko +log2 h) O(ki)+O(log2 h)
本文方案 O(1) O(ki +ko) O(ko) O(ki)
Tab.2 Comparison of computing complexity
Fig.6 Storage compression ratios of nodes
Fig.7 Time cost for entire lifecycle of transaction
Fig.8 Time cost for each phase of transaction lifecycle
[1]   MONRAT A A, SCHELEN O, ANDERSSON K A survey of blockchain from the perspectives of applications, challenges, and opportunities[J]. IEEE Access, 2019, 7: 117134- 117151
doi: 10.1109/ACCESS.2019.2936094
[2]   BELOTTI M, BOZIC N, PUJOLLE G, et al A vademecum on blockchain technologies: when, which, and how[J]. IEEE Communications Surveys and Tutorials, 2019, 21 (4): 3796- 3838
doi: 10.1109/COMST.2019.2928178
[3]   TRELEAVEN P, BROWN R G, YANG D Blockchain technology in finance[J]. Computer, 2017, 50 (9): 14- 17
doi: 10.1109/MC.2017.3571047
[4]   BERTINO E, SANDHU R Database security-concepts, approaches, and challenges[J]. IEEE Transactions on Dependable and Secure Computing, 2005, 2 (1): 2- 19
doi: 10.1109/TDSC.2005.9
[5]   EYAL I Blockchain technology: transforming libertarian cryptocurrency dreams to finance and banking realities[J]. Computer, 2017, 50 (9): 38- 49
doi: 10.1109/MC.2017.3571042
[6]   SRIVASTAVA G, DHAR S, DWIVEDI A D, et al. Blockchain education [C]// IEEE Canadian Conference of Electrical and Computer Engineering. Edmonton: IEEE, 2019: 1-5.
[7]   METTLER M. Blockchain technology in healthcare: the revolution starts here [C]// 18th IEEE International Conference on e-Health Networking, Applications and Services. Munich: IEEE, 2016: 1-3.
[8]   CHANG S E, CHEN Y When blockchain meets supply chain: a systematic literature review on current development and potential applications[J]. IEEE Access, 2020, 8: 62478- 62494
doi: 10.1109/ACCESS.2020.2983601
[9]   ZHOU Q, HUANG H, ZHENG Z, et al Solutions to scalability of blockchain: a survey[J]. IEEE Access, 2020, 8: 16440- 16455
doi: 10.1109/ACCESS.2020.2967218
[10]   CHAUHAN A, MALVIYA O P, VERMA M, et al. Blockchain and scalability [C]// IEEE International Conference on Software Quality, Reliability and Security Companion. Lisbon: IEEE, 2018: 122-128.
[11]   韩璇, 袁勇, 王飞跃 区块链安全问题: 研究现状与展望[J]. 自动化学报, 2019, 45 (1): 206- 225
HAN Xuan, YUAN Yong, WANG Fei-yue Blockchain security issues: research status and prospects[J]. Acta Automatica Sinica, 2019, 45 (1): 206- 225
[12]   ZHENG Z, XIE S, DAI H, et al. An overview of blockchain technology: architecture, consensus, and future trends [C]// IEEE International Congress on Big Data. Boston: IEEE, 2017: 557-564.
[13]   NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system [EB/OL]. (2008-10-31)[2022-07-15]. https://bitcoin.org/bitcoin.pdf.
[14]   WOOD G Ethereum: a secure decentralised generalised transaction ledger[J]. Ethereum Project Yellow Paper, 2014, 151 (2014): 1- 32
[15]   Unspent transaction output set [EB/OL]. [ 2022-07-15]. https://statoshi.info/d/000000009/unspent-transaction-output-set.
[16]   SAAD M, NJILLA L, KAMHOUA C, et al. Mempool optimization for defending against DDoS attacks in PoW-based blockchain systems [C]// IEEE International Conference on Blockchain and Cryptocurrency. Seoul: IEEE, 2019: 285-292.
[17]   WANG Q, ZHU X, NI Y, et al Blockchain for the IoT and industrial IoT: a review[J]. Internet of Things, 2020, 10: 100081
doi: 10.1016/j.iot.2019.100081
[18]   XIONG Z, ZHANG Y, NIYATO D, et al When mobile blockchain meets edge computing[J]. IEEE Communications Magazine, 2018, 56 (8): 33- 39
doi: 10.1109/MCOM.2018.1701095
[19]   XU C, ZHANG C, XU J, et al SlimChain: scaling blockchain transactions through off-chain storage and parallel processing[J]. Proceedings of the VLDB Endowment, 2021, 14 (11): 2314- 2326
doi: 10.14778/3476249.3476283
[20]   GUO Z, GAO Z, MEI H, et al Design and optimization for storage mechanism of the public blockchain based on redundant residual number system[J]. IEEE Access, 2019, 7: 98546- 98554
doi: 10.1109/ACCESS.2019.2930125
[21]   TODD P. Making UTXO set growth irrelevant with low-latency delayed two-commitments [EB/OL]. (2016-05-17)[2022-07-15]. https://petertodd.org/2016/delayed-txo-commitments.
[22]   CHEPURNOY A, PAPAMANTHOU C, SRINIVASAN S, et al. Edrax: a cryptocurrency with stateless transaction validation [EB/OL]. (2018-10-14) [2022-07-15]. https://eprint.iacr.org/2018/968.
[23]   BAILEY B, SANKAGIRI S. Merkle trees optimized for stateless clients in bitcoin [C]// International Conference on Financial Cryptography and Data Security. Berlin: Springer, 2021: 451-466.
[24]   RAIKWAR M, GLIGOROSKI D. Aggregation in blockchain ecosystem [C]// 8th International Conference on Software Defined Systems. Gandia: IEEE, 2021: 1-6.
[25]   BONEH D, BUNZ B, FISCH B. Batching techniques for accumulators with applications to IOPs and stateless blockchains [C]// Annual International Cryptology Conference. Cham: Springer, 2019: 561-586.
[26]   CHEN H, WANG Y MiniChain: a lightweight protocol to combat the UTXO growth in public blockchain[J]. Journal of Parallel and Distributed Computing, 2020, 143: 67- 76
doi: 10.1016/j.jpdc.2020.05.001
[27]   OZCELIK I, MEDURY S, BROADDUS J, et al. An overview of cryptographic accumulators [EB/OL]. (2021-03-07) [2022-07-15]. https://arxiv.org/pdf/2103.04330.pdf.
[28]   BALDIMTSI F, CAMENISCH J, DUBOVITSKAYA M, et al. Accumulators with applications to anonymity-preserving revocation [C]// IEEE European Symposium on Security and Privacy. Paris: IEEE, 2017: 301-315.
[29]   ZHONG H, SANG Y, ZHANG Y, et al. Secure multi-party computation on blockchain: an overview [C]// International Symposium on Parallel Architectures, Algorithms and Programming. Singapore: Springer, 2019: 452-460.
[30]   RSA-2048 [EB/OL]. [2022-07-15]. https://community.rsa.com/community/labs.
[31]   LIN Y J, WU P W, HSU C H, et al. An evaluation of bitcoin address classification based on transaction history summarization [C]// IEEE International Conference on Blockchain and Cryptocurrency. Seoul: IEEE, 2019: 302-310.
[1] Xue-jiao LIU,Qing-wu SONG,Ying-jie XIA. Secure computation offloading scheme for matrix in Internet of vehicles based on blockchain[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 144-154.
[2] Xue-jiao LIU,Hui-min WANG,Ying-jie XIA,Si-wei ZHAO. Task allocation method for Internet of vehicles spatial crowdsourcing with privacy protection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1267-1275.
[3] Miao HE,Fen-hua BAI,Zhuo YU,Tao SHEN. Publicly verifiable secret sharing technology in blockchain[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 306-312.
[4] Si-han DONG,Jun-chang XIN,Kun HAO,Zhong-ming YAO,Jin-yi CHEN. A join query optimization algorithm in multi-blockchain environment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 313-321.
[5] Liang SUN,Xiao-feng LI,He ZHAO,Bin YU,Tong ZHOU,Xi-ru LI. NFT-based method for assetization of physical assets on blockchain[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1900-1911.
[6] Xiu-bo LIANG,Jun-han WU,Yu ZHAO,Ke-ting YIN. Review of blockchain data security management and privacy protection technology research[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 1-15.
[7] Xue-jiao LIU,Yi-dan YIN,Wei CHEN,Ying-jie XIA,Jia-li XU,Li-dong HAN. Secure data sharing scheme in Internet of Vehicles based on blockchain[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 957-965.
[8] SHENG Nian-zu, LI Fang, LI Xiao-feng, ZHAO He, ZHOU Tong. Data capitalization method based on blockchain smart contract for Internet of Things[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2150-2158.