|
|
|
| Mobile-based human fall detection method for photovoltaic power plant construction |
Binbin LI1( ),Chao ZHANG2,Tao QIN1,Changsheng CHEN1,Xingyan LIU3,Jing YANG1,4,*( ) |
1. Electrical Engineering College, Guizhou University, Guiyang 550025, China 2. China Power Construction Group Guizhou Engineering Limited Company, Guiyang 550025, China 3. Power Grid Planning and Research Center of Guizhou Power Grid Limited Company, Guiyang 550025, China 4. Guizhou Provincial Key Laboratory of Internet+Intelligent Manufacturing, Guiyang 550025, China |
|
|
|
Abstract A mobile-based CMD-YOLO detection method was proposed in order to address the challenges of complex background, difficulty in detecting human fall, and limited on-site deployment in photovoltaic power plant construction. YOLOv8 was used as the baseline and the traditional C2f module was replaced with an improved dual-branch convolution fusion module (C2f-Dualconv) in order to enhance feature extraction and computational efficiency. The original neck network was replaced with a lightweight cross-scale feature fusion module (CCFM), introducing a multi-scale dilated Transformer attention (MSDA) between the backbone and the neck. The experiment was deployed on the Orange Pi5 Pro RK3588 platform. Results showed an average accuracy of 88.6%, with parameter count and computational load reduced by 31.3% and 22.2% respectively. Single-image detection time was 0.0297 s, and average power consumption was 2.2647 W. CMD-YOLO effectively addresses key challenges in fall detection at photovoltaic power plant through its advantage of low parameter count, low power consumption and high real-time performance. CMD-YOLO operates stably in resource-constrained field environment, providing reliable support for real-time detection on mobile device.
|
|
Received: 10 July 2025
Published: 04 February 2026
|
|
|
| Fund: 国家自然科学基金资助项目(61640014,52267003);贵州省科技支撑计划资助项目(黔科合支撑[2023]一般411,黔科合支撑[2024]一般051,黔科合支撑[2025]一般008);贵州省基础研究计划资助项目(黔科合基础MS[2025]596);贵州省科技成果转化项目(黔科合成果-LH[2024]重大028,黔科合成果LH[2025]重点009);贵州省教育厅工程研究中心资助项目(黔教技[2022]040);中国电建集团科技资助项目(DJ-ZDXM-2022-44). |
|
Corresponding Authors:
Jing YANG
E-mail: gs.libb24@gzu.edu.cn;jyang7@gzu.edu.cn
|
面向光伏电站建设的移动端人体跌倒检测方法
针对光伏电站建设中背景复杂、人体跌倒检测困难及现场部署受限的问题,提出基于移动端的CMD-YOLO检测方法. 该方法以YOLOv8为基线,使用改进的双分支卷积融合模块(C2f-Dualconv)替换传统C2f模块,以提高特征提取和计算效率. 采用轻量化跨尺度特征融合模块(CCFM)替换原颈部网络,在主干与颈部间引入多尺度空洞注意力机制(MSDA). 实验部署在Orange Pi5 Pro RK3588平台上,结果显示平均精度达到88.6%,参数量和运算量分别降低了31.3%和22.2%,单张检测时间为0.029 7 s,平均功耗为2.264 7 W. CMD-YOLO以低参数量、低功耗和高实时性的优势,有效应对光伏电站跌倒检测中的关键挑战,并能在资源受限的现场稳定运行,为移动端的实时检测提供可靠的支持.
关键词:
人体跌倒检测,
YOLOv8,
轻量化,
低功耗,
注意力机制,
移动端部署
|
|
| [1] |
CHOI S D, GUO L, KIM J, et al Comparison of fatal occupational injuries in construction industry in the United States, South Korea, and China[J]. International Journal of Industrial Ergonomics, 2019, 71: 64- 74
doi: 10.1016/j.ergon.2019.02.011
|
|
|
| [2] |
HU K, RAHMANDAD H, SMITH-JACKSON T, et al Factors influencing the risk of falls in the construction industry: a review of the evidence[J]. Construction Management and Economics, 2011, 29 (4): 397- 416
doi: 10.1080/01446193.2011.558104
|
|
|
| [3] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580–587.
|
|
|
| [4] |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
|
|
| [5] |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980–2988.
|
|
|
| [6] |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154–6162.
|
|
|
| [7] |
DELGADO-ESCAÑO R, CASTRO F M, CÓZAR J R, et al A cross-dataset deep learning-based classifier for people fall detection and identification[J]. Computer Methods and Programs in Biomedicine, 2020, 184: 105265
doi: 10.1016/j.cmpb.2019.105265
|
|
|
| [8] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
|
|
|
| [9] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517–6525.
|
|
|
| [10] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2025-05-07]. https://arxiv.org/abs/1804.02767.
|
|
|
| [11] |
BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2025-05-21]. https://arxiv.org/abs/2004.10934.
|
|
|
| [12] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//European Conference on Computer Vision. Cham: Springer, 2016: 21–37.
|
|
|
| [13] |
HAN S, LIU X, MAO H, et al. EIE: efficient inference engine on compressed deep neural network [C]//Proceedings of the ACM/IEEE 43rd Annual International Symposium on Computer Architecture. Seoul: IEEE, 2016: 243–254.
|
|
|
| [14] |
赵俊杰, 周晓静, 李佳欣 改进YOLOV7的跌倒人员检测[J]. 计算机科学, 2024, 51 (Suppl.1): 613- 618 ZHAO Junjie, ZHOU Xiaojing, LI Jiaxin Improving the detection of fallen persons in YOLOV7[J]. Computer Science, 2024, 51 (Suppl.1): 613- 618
doi: 10.11896/jsjkx.230800039
|
|
|
| [15] |
朱胜豪, 钱承山, 阚希 改进YOLOv5的高精度跌倒检测算法[J]. 计算机工程与应用, 2024, 60 (11): 105- 114 ZHU Shenghao, QIAN Chengshan, KAN Xi High-precision fall detection algorithm with improved YOLOv5[J]. Computer Engineering and Applications, 2024, 60 (11): 105- 114
doi: 10.3778/j.issn.1002-8331.2307-0190
|
|
|
| [16] |
ZHAO D, SONG T, GAO J, et al YOLO-fall: a novel convolutional neural network model for fall detection in open spaces[J]. IEEE Access, 2024, 12: 26137- 26149
doi: 10.1109/ACCESS.2024.3362958
|
|
|
| [17] |
WANG H, XU S, CHEN Y, et al LFD-YOLO: a lightweight fall detection network with enhanced feature extraction and fusion[J]. Scientific Reports, 2025, 15: 5069
doi: 10.1038/s41598-025-89214-7
|
|
|
| [18] |
HUANG X, LI X, YUAN L, et al SDES-YOLO: a high-precision and lightweight model for fall detection in complex environments[J]. Scientific Reports, 2025, 15: 2026
doi: 10.1038/s41598-025-86593-9
|
|
|
| [19] |
ZHANG X, BAI J, QIAO G, et al YOLO-fall: a YOLO-based fall detection model with high precision, shrunk size, and low latency[J]. The Computer Journal, 2025, 68 (7): 804- 812
doi: 10.1093/comjnl/bxaf005
|
|
|
| [20] |
PRIADANA A, NGUYEN D L, VO X T, et al HFD-YOLO: improved YOLO network using efficient attention modules for real-time one-stage human fall detection[J]. IEEE Access, 2025, 13: 41248- 41258
doi: 10.1109/ACCESS.2025.3547360
|
|
|
| [21] |
ZHONG J, CHEN J, MIAN A DualConv: dual convolutional kernels for lightweight deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (11): 9528- 9535
doi: 10.1109/TNNLS.2022.3151138
|
|
|
| [22] |
JIAO J, TANG Y M, LIN K Y, et al DilateFormer: multi-scale dilated transformer for visual recognition[J]. IEEE Transactions on Multimedia, 2023, 25: 8906- 8919
doi: 10.1109/TMM.2023.3243616
|
|
|
| [23] |
ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965–16974.
|
|
|
| [24] |
CHENG G, SI Y, HONG H, et al Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (3): 431- 435
doi: 10.1109/LGRS.2020.2975541
|
|
|
| [25] |
孙寿松, 李新凯, 张宏立, 等 嵌入式平台的番茄叶片病虫害检测模型[J]. 计算机工程与应用, 2025, 61 (16): 305- 314 SUN Shousong, LI Xinkai, ZHANG Hongli, et al Embedded platform for tomato leaf pest detection model[J]. Computer Engineering and Applications, 2025, 61 (16): 305- 314
doi: 10.3778/j.issn.1002-8331.2411-0193
|
|
|
| [26] |
宋芝文, 李伟, 谭伟, 等 基于YOLO V4-TLite的移动端君子兰病虫害检测方法[J]. 农业工程学报, 2025, 41 (5): 175- 181 SONG Zhiwen, LI Wei, TAN Wei, et al Detection method for Clivia miniata pests and diseases on mobile terminal based on YOLO V4-TLite[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41 (5): 175- 181
doi: 10.11975/j.issn.1002-6819.202409169
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|