Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (3): 546-555    DOI: 10.3785/j.issn.1008-973X.2026.03.010
    
Mobile-based human fall detection method for photovoltaic power plant construction
Binbin LI1(),Chao ZHANG2,Tao QIN1,Changsheng CHEN1,Xingyan LIU3,Jing YANG1,4,*()
1. Electrical Engineering College, Guizhou University, Guiyang 550025, China
2. China Power Construction Group Guizhou Engineering Limited Company, Guiyang 550025, China
3. Power Grid Planning and Research Center of Guizhou Power Grid Limited Company, Guiyang 550025, China
4. Guizhou Provincial Key Laboratory of Internet+Intelligent Manufacturing, Guiyang 550025, China
Download: HTML     PDF(7437KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A mobile-based CMD-YOLO detection method was proposed in order to address the challenges of complex background, difficulty in detecting human fall, and limited on-site deployment in photovoltaic power plant construction. YOLOv8 was used as the baseline and the traditional C2f module was replaced with an improved dual-branch convolution fusion module (C2f-Dualconv) in order to enhance feature extraction and computational efficiency. The original neck network was replaced with a lightweight cross-scale feature fusion module (CCFM), introducing a multi-scale dilated Transformer attention (MSDA) between the backbone and the neck. The experiment was deployed on the Orange Pi5 Pro RK3588 platform. Results showed an average accuracy of 88.6%, with parameter count and computational load reduced by 31.3% and 22.2% respectively. Single-image detection time was 0.0297 s, and average power consumption was 2.2647 W. CMD-YOLO effectively addresses key challenges in fall detection at photovoltaic power plant through its advantage of low parameter count, low power consumption and high real-time performance. CMD-YOLO operates stably in resource-constrained field environment, providing reliable support for real-time detection on mobile device.



Key wordshuman fall detection      YOLOv8      lightweight      low power consumption      attention mechanism      mobile deployment     
Received: 10 July 2025      Published: 04 February 2026
CLC:  TP 391  
  TU 714  
Fund:  国家自然科学基金资助项目(61640014,52267003);贵州省科技支撑计划资助项目(黔科合支撑[2023]一般411,黔科合支撑[2024]一般051,黔科合支撑[2025]一般008);贵州省基础研究计划资助项目(黔科合基础MS[2025]596);贵州省科技成果转化项目(黔科合成果-LH[2024]重大028,黔科合成果LH[2025]重点009);贵州省教育厅工程研究中心资助项目(黔教技[2022]040);中国电建集团科技资助项目(DJ-ZDXM-2022-44).
Corresponding Authors: Jing YANG     E-mail: gs.libb24@gzu.edu.cn;jyang7@gzu.edu.cn
Cite this article:

Binbin LI,Chao ZHANG,Tao QIN,Changsheng CHEN,Xingyan LIU,Jing YANG. Mobile-based human fall detection method for photovoltaic power plant construction. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 546-555.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.03.010     OR     https://www.zjujournals.com/eng/Y2026/V60/I3/546


面向光伏电站建设的移动端人体跌倒检测方法

针对光伏电站建设中背景复杂、人体跌倒检测困难及现场部署受限的问题,提出基于移动端的CMD-YOLO检测方法. 该方法以YOLOv8为基线,使用改进的双分支卷积融合模块(C2f-Dualconv)替换传统C2f模块,以提高特征提取和计算效率. 采用轻量化跨尺度特征融合模块(CCFM)替换原颈部网络,在主干与颈部间引入多尺度空洞注意力机制(MSDA). 实验部署在Orange Pi5 Pro RK3588平台上,结果显示平均精度达到88.6%,参数量和运算量分别降低了31.3%和22.2%,单张检测时间为0.029 7 s,平均功耗为2.264 7 W. CMD-YOLO以低参数量、低功耗和高实时性的优势,有效应对光伏电站跌倒检测中的关键挑战,并能在资源受限的现场稳定运行,为移动端的实时检测提供可靠的支持.


关键词: 人体跌倒检测,  YOLOv8,  轻量化,  低功耗,  注意力机制,  移动端部署 
Fig.1 Structure of CMD-YOLO model
Fig.2 Diagram of DualConv structure
Fig.3 Diagram of C2f-DualConv structure
Fig.4 Diagram of MSDA structure
Fig.5 Diagram of CCFM structure
Fig.6 Effect comparison diagram of neck network before and after optimization
Fig.7 Fall detection dataset
标签OdEd总计
Fallen120236064808
Falling106732014268
Normal225467629016
Tab.1 Statistical table of labels for each category in dataset
Fig.8 Data augmentation diagram
类型名称配置
训练系统Windows 10
CPUIntel Core i9-12900K
GPURTX-3090
内存RAM32 GB
部署系统Ubuntu20.04
CPUCortex-A76,A55
GPUARMMali-G610
内存RAM8 GB
Tab.2 Training and deployment platform specification
模块设置mAP50/
%
P/
%
R/
%
NP/
106
FLOPs/
109
CCFMMSDAC2f-Dualconv
85.786.980.83.008.1
86.082.382.71.966.6
86.386.681.63.308.4
86.387.481.92.707.4
86.686.783.02.246.8
86.785.982.13.007.7
86.686.481.81.786.1
88.687.884.52.066.3
Tab.3 Comparison result of ablation experiment
Fig.9 Training test result of each model
模型mAP50/%P/%R/%NP/106FLOPs/109F/(帧·s?1)
Nanodet76.878.558.20.931.4140.3
YOLOv585.587.879.32.507.182.1
YOLOv8n85.786.980.83.008.188.0
YOLOv9t85.786.378.11.736.459.2
YOLOv11n85.187.781.42.586.386.2
YOLOv8-D86.387.781.92.707.497.6
YOLOv8-C86.082.382.71.966.6100.7
YOLOv8-CD86.686.481.81.786.198.6
YOLOv8-CM86.686.783.02.246.891.6
CMD-YOLO88.687.884.52.066.3101.9
Tab.4 Overall performance test result of each model
Fig.10 Physical picture of Orange Pi5 Pro RK3588
模型A/MBS/sP/W
YOLOv55.000.02862.4869
YOLOv8n5.160.02672.5165
YOLOv9t8.450.05892.1433
YOLOv11n5.540.05872.4517
CMD-YOLO5.080.02972.2647
Tab.5 Performance comparison of various model after deployment
Fig.11 Comparison chart of heat map effect
Fig.12 Comparison of visualization effect of different models
[1]   CHOI S D, GUO L, KIM J, et al Comparison of fatal occupational injuries in construction industry in the United States, South Korea, and China[J]. International Journal of Industrial Ergonomics, 2019, 71: 64- 74
doi: 10.1016/j.ergon.2019.02.011
[2]   HU K, RAHMANDAD H, SMITH-JACKSON T, et al Factors influencing the risk of falls in the construction industry: a review of the evidence[J]. Construction Management and Economics, 2011, 29 (4): 397- 416
doi: 10.1080/01446193.2011.558104
[3]   GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580–587.
[4]   REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
[5]   HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980–2988.
[6]   CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154–6162.
[7]   DELGADO-ESCAÑO R, CASTRO F M, CÓZAR J R, et al A cross-dataset deep learning-based classifier for people fall detection and identification[J]. Computer Methods and Programs in Biomedicine, 2020, 184: 105265
doi: 10.1016/j.cmpb.2019.105265
[8]   REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
[9]   REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517–6525.
[10]   REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2025-05-07]. https://arxiv.org/abs/1804.02767.
[11]   BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2025-05-21]. https://arxiv.org/abs/2004.10934.
[12]   LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//European Conference on Computer Vision. Cham: Springer, 2016: 21–37.
[13]   HAN S, LIU X, MAO H, et al. EIE: efficient inference engine on compressed deep neural network [C]//Proceedings of the ACM/IEEE 43rd Annual International Symposium on Computer Architecture. Seoul: IEEE, 2016: 243–254.
[14]   赵俊杰, 周晓静, 李佳欣 改进YOLOV7的跌倒人员检测[J]. 计算机科学, 2024, 51 (Suppl.1): 613- 618
ZHAO Junjie, ZHOU Xiaojing, LI Jiaxin Improving the detection of fallen persons in YOLOV7[J]. Computer Science, 2024, 51 (Suppl.1): 613- 618
doi: 10.11896/jsjkx.230800039
[15]   朱胜豪, 钱承山, 阚希 改进YOLOv5的高精度跌倒检测算法[J]. 计算机工程与应用, 2024, 60 (11): 105- 114
ZHU Shenghao, QIAN Chengshan, KAN Xi High-precision fall detection algorithm with improved YOLOv5[J]. Computer Engineering and Applications, 2024, 60 (11): 105- 114
doi: 10.3778/j.issn.1002-8331.2307-0190
[16]   ZHAO D, SONG T, GAO J, et al YOLO-fall: a novel convolutional neural network model for fall detection in open spaces[J]. IEEE Access, 2024, 12: 26137- 26149
doi: 10.1109/ACCESS.2024.3362958
[17]   WANG H, XU S, CHEN Y, et al LFD-YOLO: a lightweight fall detection network with enhanced feature extraction and fusion[J]. Scientific Reports, 2025, 15: 5069
doi: 10.1038/s41598-025-89214-7
[18]   HUANG X, LI X, YUAN L, et al SDES-YOLO: a high-precision and lightweight model for fall detection in complex environments[J]. Scientific Reports, 2025, 15: 2026
doi: 10.1038/s41598-025-86593-9
[19]   ZHANG X, BAI J, QIAO G, et al YOLO-fall: a YOLO-based fall detection model with high precision, shrunk size, and low latency[J]. The Computer Journal, 2025, 68 (7): 804- 812
doi: 10.1093/comjnl/bxaf005
[20]   PRIADANA A, NGUYEN D L, VO X T, et al HFD-YOLO: improved YOLO network using efficient attention modules for real-time one-stage human fall detection[J]. IEEE Access, 2025, 13: 41248- 41258
doi: 10.1109/ACCESS.2025.3547360
[21]   ZHONG J, CHEN J, MIAN A DualConv: dual convolutional kernels for lightweight deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (11): 9528- 9535
doi: 10.1109/TNNLS.2022.3151138
[22]   JIAO J, TANG Y M, LIN K Y, et al DilateFormer: multi-scale dilated transformer for visual recognition[J]. IEEE Transactions on Multimedia, 2023, 25: 8906- 8919
doi: 10.1109/TMM.2023.3243616
[23]   ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965–16974.
[24]   CHENG G, SI Y, HONG H, et al Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (3): 431- 435
doi: 10.1109/LGRS.2020.2975541
[25]   孙寿松, 李新凯, 张宏立, 等 嵌入式平台的番茄叶片病虫害检测模型[J]. 计算机工程与应用, 2025, 61 (16): 305- 314
SUN Shousong, LI Xinkai, ZHANG Hongli, et al Embedded platform for tomato leaf pest detection model[J]. Computer Engineering and Applications, 2025, 61 (16): 305- 314
doi: 10.3778/j.issn.1002-8331.2411-0193
[26]   宋芝文, 李伟, 谭伟, 等 基于YOLO V4-TLite的移动端君子兰病虫害检测方法[J]. 农业工程学报, 2025, 41 (5): 175- 181
SONG Zhiwen, LI Wei, TAN Wei, et al Detection method for Clivia miniata pests and diseases on mobile terminal based on YOLO V4-TLite[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41 (5): 175- 181
doi: 10.11975/j.issn.1002-6819.202409169
[1] Wenqiang CHEN,Linyue FENG,Dongdan WANG,Yulei GU,Xuan ZHAO. Vehicle trajectory prediction model integrating dynamic risk map and multivariate attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 455-467.
[2] Xiaochun WU,Ning GUO. Lightweight detection method of water leakage in tunnel based on HMARU-net[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 468-477.
[3] Congyu HU,Chenbo YIN,Wei MA,Chao YANG,Shikuan YAN. Object recognition of excavator operation based on improved CNN-LSTM[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 536-545.
[4] Shuang WANG,Xitai ZHANG,Yongcun GUO,Shousuo SUN. Demagnetization fault diagnosis of controllable hybrid magnetic couplers based on deep neural networks[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 279-286.
[5] Xianhua LI,Pengfei DU,Tao SONG,Xun QIU,Yu CAI. EEG signal classification based on multi-scale sliding-window attention temporal convolutional networks[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 370-378.
[6] Minghui YANG,Muyuan SONG,Daxi FU,Yanwei GUO,Xianzhui LU,Wencong ZHANG,Weilong ZHENG. Prediction of shield tunneling-induced soil settlement based on multi-head self-attention-Bi-LSTM model[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 415-424.
[7] Jian XIAO,Xinze HE,Hongliang CHENG,Xiaoyuan YANG,Xin HU. Aerial small target detection algorithm based on multi-scale feature enhancement[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 19-31.
[8] Siyao ZHOU,Nan XIA,Jiahong JIANG. Pose-guided dual-branch network for clothing-changing person re-identification[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 71-80.
[9] Chaoqun DONG,Zhan WANG,Ping LIAO,Shuai XIE,Yujie RONG,Jingsong ZHOU. Lightweight YOLOv5s-OCG rail sleeper crack detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1838-1845.
[10] Fujian WANG,Zetian ZHANG,Xiqun CHEN,Dianhai WANG. Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1986-1995.
[11] Xuejun ZHANG,Shubin LIANG,Wanrong BAI,Fenghe ZHANG,Haiyan HUANG,Meifeng GUO,Zhuo CHEN. Source code vulnerability detection method based on heterogeneous graph representation[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1644-1652.
[12] Yishan LIN,Jing ZUO,Shuhua LU. Multimodal sentiment analysis based on multi-head self-attention mechanism and MLP-Interactor[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1653-1661.
[13] Yahong ZHAI,Yaling CHEN,Longyan XU,Yu GONG. Improved YOLOv8s lightweight small target detection algorithm of UAV aerial image[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1708-1717.
[14] Jiarui FU,Zhaofei LI,Hao ZHOU,Wei HUANG. Camouflaged object detection based on Convnextv2 and texture-edge guidance[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1718-1726.
[15] Rongtai YANG,Yubin SHAO,Qingzhi DU. Structure-aware model for few-shot knowledge completion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1394-1402.