Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (12): 2506-2515    DOI: 10.3785/j.issn.1008-973X.2025.12.005
    
Joint optimization for task offloading and resource allocation in multi-layer edge computing networks
Yongqing XIAO1(),Yubo LU2,Xingmeng YANG3,Jianwei WEI1,Lin SU1,Xinjian HAO1,Guanding YU2,*()
1. Xuejiawan Power Supply Company of Inner Mongolia Electric Power (Group) Co. Ltd, Ordos 010300, China
2. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
3. Inner Mongolia Electric Power (Group) Co. Ltd, Hohhot 010010, China
Download: HTML     PDF(993KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An optimization strategy for multi-layer edge computing networks based on computing power and channel quality was proposed to address the problem of wireless resource management caused by communication and computing power heterogeneity in multi-layer edge computing networks. A performance analysis of a typical multi-layer edge computing network was presented, including communication performance and edge computing latency performance. A mixed-integer nonlinear programming (MINLP) problem was formulated based on the computing power and transmission power of base stations, the computing power and task characteristics of devices, as well as the user association, offloading decision, and resource allocation, aiming to minimize the latency of local computing and the upload, processing, and backhaul latency of edge computing. Based on an iterative optimization approach, the optimal user association was achieved by considering both channel quality and computing power, a task offloading strategy was developed to balance local and edge computing, and wireless resource allocation was optimized to minimize edge computing latency. Simulation results highlighted the importance of jointly optimizing spectrum and computing resource allocation, as well as optimizing task offloading in edge computing networks, and showed that user association optimized based on both channel quality and computing power achieved lower latency compared to traditional methods that relied on only channel quality or computing power.



Key wordsmulti-layer edge computing networks      user association      offloading decision      resource allocation      latency optimization     
Received: 26 November 2024      Published: 25 November 2025
CLC:  TN 915  
Fund:  内蒙古电力(集团)有限责任公司2024年度科技项目(2024?04?29).
Corresponding Authors: Guanding YU     E-mail: 1136303434@qq.com;yuguanding@zju.edu.cn
Cite this article:

Yongqing XIAO,Yubo LU,Xingmeng YANG,Jianwei WEI,Lin SU,Xinjian HAO,Guanding YU. Joint optimization for task offloading and resource allocation in multi-layer edge computing networks. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2506-2515.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.12.005     OR     https://www.zjujournals.com/eng/Y2025/V59/I12/2506


多层边缘计算网络中任务卸载与资源分配联合优化

为了解决多层边缘计算网络中通信以及算力异构给无线资源管理带来的问题,提出基于算力和信道质量的多层边缘计算网络优化策略. 给出典型的多层边缘计算网络的性能分析,包括通信性能以及边缘计算时延性能. 以最小化本地计算以及边缘计算的上传、处理、回传的时延为目标,构建基于基站的算力、功率,终端的算力、任务特性,以及用户关联、卸载决策、资源分配的混合整数非线性规划问题,基于迭代优化分别获得基于信道质量和算力的最优用户关联、平衡本地计算和边缘计算的任务卸载策略以及最小化边缘计算时延的无线资源分配. 仿真结果证明了,频谱与算力资源共同优化分配、终端任务的最优卸载在边缘计算网络的重要性,也验证了基于信道质量和算力进行用户关联比传统的只基于信道质量或是算力的方法具有更低的时延.


关键词: 多层边缘计算网络,  用户关联,  卸载决策,  资源分配,  时延优化 
Fig.1 Multi-layer edge computing network
Fig.2 Process of edge computing
Fig.3 Effect of resource allocation effectiveness
Fig.4 Latency comparison between proposed method with GA and SQP algorithms
Fig.5 Throughput comparison between proposed method with GA and SQP algorithms
Fig.6 Comparison of latency under different offloading decisions
Fig.7 Throughput comparison under different offloading decisions
策略T/s
低带宽适中带宽高带宽
算法1862.73856.39854.43
算法6897.33897.33897.33
算法724859.0024812.0024805.00
Tab.1 Delay of base station under limit computing power
Fig.8 Comparison of latency under different user associations
Fig.9 Comparison of throughput under different user associations
[1]   杨守义, 陈怡航, 张双玲, 等 面向未来移动通信的移动边缘计算研究综述[J]. 郑州大学学报: 工学版, 2024, 45 (4): 1- 10,29
YANG Shouyi, CHEN Yihang, ZHANG Shuangling, et al Research of mobile edge computing for future mobile communications: a review[J]. Journal of Zhengzhou University: Engineering Science, 2024, 45 (4): 1- 10,29
[2]   PREMSANKAR G, DI FRANCESCO M, TALEB T Edge computing for the Internet of Things: a case study[J]. IEEE Internet of Things Journal, 2018, 5 (2): 1275- 1284
doi: 10.1109/JIOT.2018.2805263
[3]   杨文宇, 唐菁敏, 杨飞, 等 车辆边缘计算中联合资源分配和任务卸载方案[J]. 通信技术, 2024, 57 (5): 470- 479
YANG Wenyu, TANG Jingmin, YANG Fei, et al Joint resource allocation and task offloading schemes in vehicle edge computing[J]. Communications Technology, 2024, 57 (5): 470- 479
[4]   吴文娇, 郭荣佐, 樊相奎 基于DRL的无人机辅助MEC任务卸载算法[J]. 计算机工程与设计, 2024, 45 (9): 2697- 2703
WU Wenjiao, GUO Rongzuo, FAN Xiangkui DRL-based unmanned aerial vehicle assisted MEC offloading algorithm[J]. Computer Engineering and Design, 2024, 45 (9): 2697- 2703
[5]   DONG S, TANG J, ABBAS K, et al Task offloading strategies for mobile edge computing: a survey[J]. Computer Networks, 2024, 254: 110791
doi: 10.1016/j.comnet.2024.110791
[6]   BIRHANIE H M, ADEM M O Optimized task offloading strategy in IoT edge computing network[J]. Journal of King Saud University: Computer and Information Sciences, 2024, 36 (2): 101942
doi: 10.1016/j.jksuci.2024.101942
[7]   赵天祺, 赵洺月, 师越, 等 基于星地协同的低时延任务卸载算法[J]. 无线电通信技术, 2023, 49 (5): 883- 890
ZHAO Tianqi, ZHAO Mingyue, SHI Yue, et al A satellite-ground based low-latency task offloading algorithm[J]. Radio Communications Technology, 2023, 49 (5): 883- 890
[8]   何茂霖, 多滨, 胡艳梅, 等 基于智能超表面的无人机移动边缘计算综述[J]. 无线电通信技术, 2024, 50 (2): 349- 356
HE Maolin, DUO Bin, HU Yanmei, et al Survey on UAV-enabled mobile edge computing based on reconfigurable intelligent surface[J]. Radio Communications Technology, 2024, 50 (2): 349- 356
[9]   郭鸿志, 王宇涛, 王佳黛, 等 面向复杂任务的多无人机协同计算资源分配与优化[J]. 无线电通信技术, 2022, 48 (6): 1012- 1018
GUO Hongzhi, WANG Yutao, WANG Jiadai, et al Multi-UAV cooperative computing resource allocation and optimization for complex tasks[J]. Radio Communications Technology, 2022, 48 (6): 1012- 1018
[10]   JIANG C, LI Y, SU J, et al Research on new edge computing network architecture and task offloading strategy for Internet of Things[J]. Wireless Networks, 2024, 30 (5): 3619- 3631
doi: 10.1007/s11276-020-02516-8
[11]   刘耿旗, 张旭秀, 马洪源, 等 多边缘节点场景下的计算任务卸载算法[J]. 信息与控制, 2023, 52 (5): 679- 688
LIU Gengqi, ZHANG Xuxiu, MA Hongyuan, et al Computational task offloading algorithms for multi-edge node scenarios[J]. Information and Control, 2023, 52 (5): 679- 688
[12]   YOU C, HUANG K, CHAE H, et al Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16 (3): 1397- 1411
doi: 10.1109/TWC.2016.2633522
[13]   ZHANG K, MAO Y, LENG S, et al Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J]. IEEE Access, 2016, 4: 5896- 5907
doi: 10.1109/ACCESS.2016.2597169
[14]   HE Q, WANG R, ZHANG F, et al Design and implementation of user task offloading algorithm[J]. AIP Advances, 2024, 14 (2): 025242
doi: 10.1063/5.0181636
[15]   夏玮玮, 胡静, 宋铁成 低地球轨道卫星边缘计算场景中任务卸载与资源分配联合优化算法[J]. 通信学报, 2024, 45 (7): 48- 60
XIA Weiwei, HU Jing, SONG Tiecheng Joint optimization algorithm for task offloading and resource allocation in low earth orbit satellites edge computing scenario[J]. Journal on Communications, 2024, 45 (7): 48- 60
[16]   郭煜 移动边缘计算中带有缓存机制的任务卸载策略[J]. 计算机应用与软件, 2019, 36 (6): 114- 119
GUO Yu Tasks offloading strategy with caching mechanism in mobile margin computing[J]. Computer Applications and Software, 2019, 36 (6): 114- 119
[17]   TRAN T X, POMPILI D Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (1): 856- 868
doi: 10.1109/TVT.2018.2881191
[18]   ZHU A, WEN Y Computing offloading strategy using improved genetic algorithm in mobile edge computing system[J]. Journal of Grid Computing, 2021, 19 (3): 38
doi: 10.1007/s10723-021-09578-8
[19]   龙隆, 刘子辰, 陆在旺, 等 移动边缘网络下服务缓存与资源分配联合优化策略[J]. 通信学报, 2023, 44 (1): 64- 74
LONG Long, LIU Zichen, LU Zaiwang, et al Joint optimization strategy of service cache and resource allocation in mobile edge network[J]. Journal on Communications, 2023, 44 (1): 64- 74
[20]   代美玲, 刘周斌, 郭少勇, 等 基于终端能耗和系统时延最小化的边缘计算卸载及资源分配机制[J]. 电子与信息学报, 2019, 41 (11): 2684- 2690
DAI Meiling, LIU Zhoubin, GUO Shaoyong, et al A computation offloading and resource allocation mechanism based on minimizing devices energy consumption and system delay[J]. Journal of Electronics and Information Technology, 2019, 41 (11): 2684- 2690
[21]   JIANG H, DAI X, XIAO Z, et al Joint task offloading and resource allocation for energy-constrained mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22 (7): 4000- 4015
doi: 10.1109/TMC.2022.3150432
[22]   KIM M, JANG J, CHOI Y, et al Distributed task offloading and resource allocation for latency minimization in mobile edge computing networks[J]. IEEE Transactions on Mobile Computing, 2024, 23 (12): 15149- 15166
doi: 10.1109/TMC.2024.3458185
[23]   牟洁茹, 何华, 刘聪, 等 基于QoS驱动的多目标优化用户动态关联研究[J]. 郑州大学学报: 理学版, 2022, 54 (2): 56- 60
MU Jieru, HE Hua, LIU Cong, et al Research on dynamic association of multi-objective optimization users driven by QoS[J]. Journal of Zhengzhou University: Natural Science Edition, 2022, 54 (2): 56- 60
[24]   苏恭超, 陈彬, 林晓辉, 等 异构蜂窝网络中一种基于匈牙利算法的用户关联方法[J]. 电子科技大学学报, 2017, 46 (2): 346- 351
SU Gongchao, CHEN Bin, LIN Xiaohui, et al User association in heterogeneous cellular networks via the Hungarian method[J]. Journal of University of Electronic Science and Technology of China, 2017, 46 (2): 346- 351
[25]   柴蓉, 王令, 陈明龙, 等 基于时延优化的蜂窝D2D通信联合用户关联及内容部署算法[J]. 电子与信息学报, 2019, 41 (11): 2565- 2570
CHAI Rong, WANG Ling, CHEN Minglong, et al Joint clustering and content deployment algorithm for cellular D2D communication based on delay optimization[J]. Journal of Electronics and Information Technology, 2019, 41 (11): 2565- 2570
[1] Yulong DONG,Lu CHEN,Zhongkai BAO. Resource allocation of aircraft final assembly logistics distribution system based on game theory[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 120-129.
[2] Jiaojun LI,Tao YU,Jihua ZHOU,Fan YANG,Tao ZHAO,Tianshu WU,Zilin MA. Resource allocation strategy for cognitive industrial internet of things in dynamic uncertain scenarios[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 960-966.
[3] Chong-he LIU,Guan-ding YU,Sheng-li LIU. Hierarchical federated learning based on wireless D2D networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 892-899.
[4] Xin-tong ZHOU,Kun XIAO. Resource allocation algorithm for wireless energy harvesting cooperative network integrating uplink and downlink[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2544-2552.
[5] Jun-jie CHEN,Hong-jun LI,Zhang-hua CAO. Performance-aware resource allocation algorithm for core network control plane[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1782-1787.
[6] Chen SUN,Zhe-yi WU,Jian-tao YUAN. Energy saving and channel access algorithm of unlicensed D2D networks in power Internet of things[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1867-1873.
[7] Yi-ming LIU,Wen SHENG. Game strategy of resource allocation for phased array radar search and tracking[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1883-1891.
[8] BAI Ru-fan, LEI Jian-kun, ZHANG Liang. Towards resource allocation optimization for big data test field application[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1225-1232.
[9] ZHANG Xin-xin, XU Ke, ZHONG Yi-Feng, SU Hui. Evolutionary game analysis on cooperative behaviors of internet service providers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1214-1224.