Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (12): 2495-2505    DOI: 10.3785/j.issn.1008-973X.2025.12.004
    
Muscle fatigue characterization method based on Tsallis entropy and fluctuation-based dispersion entropy
Bo DONG(),Donghao LV*(),Keyang XI,Jiahao LI
School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Download: HTML     PDF(1548KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To address the issues of information loss and insufficient sensitivity in the feature extraction of surface electromyography (sEMG) signals, which resulted in low classification accuracy, a smooth enhanced refined composite multiscale Tsallis fluctuation-based dispersion entropy (RCMTFDE) was proposed based on Tsallis entropy and fluctuation-based dispersion entropy (FDE). The issue of discontinuity in sEMG signals caused by FDE in discrete classification was addressed by introducing a fuzzy membership function. Additionally, Tsallis entropy was combined with FDE to enhance its sensitivity to nonlinear complex systems. Considering that single time-scale analysis could not accurately characterize the signals, a smooth enhanced coarse-graining method was proposed. Signal information leakage and entropy instability during the coarse-graining process were reduced, allowing the extraction of optimal muscle fatigue features across multiple scales. Experimental results showed that RCMTFDE demonstrated significant entropy value differences when distinguishing between non-fatigue and fatigue signals, and exhibited clear fatigue gradient characteristics in the muscle fatigue quantification curve. Compared to the reference algorithms, the proposed method achieved the highest accuracy in muscle fatigue classification, reaching 96.667%.



Key wordsmuscle fatigue      surface electromyography signal      fluctuation-based dispersion entropy      Tsallis entropy      multiscale analysis     
Received: 08 December 2024      Published: 25 November 2025
CLC:  TN 911.7  
Fund:  内蒙古自治区自然科学基金资助项目(2024MS06024);内蒙古自治区一流学科科研专项项目(YLXKZX-NKD-020);内蒙古自治区直属高校基本科研业务费资助项目(2023QNJS194).
Corresponding Authors: Donghao LV     E-mail: 2023023236@stu.imust.edu.cn;wsldh2016957@imust.edu.cn
Cite this article:

Bo DONG,Donghao LV,Keyang XI,Jiahao LI. Muscle fatigue characterization method based on Tsallis entropy and fluctuation-based dispersion entropy. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2495-2505.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.12.004     OR     https://www.zjujournals.com/eng/Y2025/V59/I12/2495


融合Tsallis熵和波动分散熵的肌肉疲劳表征方法

针对目前表面肌电(sEMG)信号在肌肉疲劳识别中存在特征提取信息丢失、灵敏性不足的问题,进而影响分类精度的问题,提出基于Tsallis熵和波动分散熵(FDE)的平滑增强精细复合多尺度Tsallis波动分散熵(RCMTFDE). 该算法通过引入模糊隶属函数,解决了FDE在离散分类中影响sEMG信号连续性的问题,并结合Tsallis熵提升了FDE对非线性复杂系统的灵敏性. 考虑到单一时间尺度分析难以准确表征信号的问题,提出平滑增强的粗粒化方法,来减少粗粒化过程中信号信息泄露和熵值不稳定性,在多尺度下提取出最佳肌肉疲劳特征. 实验结果表明,RCMTFDE在区分非疲劳和疲劳信号时,展示了显著的熵值差异,且在肌肉疲劳量化曲线中表现出明显的疲劳梯度特征. 相较对比算法,该方法在肌肉疲劳分类中取得最高准确率,达到了96.667%.


关键词: 肌肉疲劳,  表面肌电信号,  波动分散熵,  Tsallis熵,  多尺度分析 
Fig.1 Comparison of coarse-graining methods
Fig.2 Mean distribution of indicators varying with q
Fig.3 Distribution of entropy value under different noise lengths
Fig.4 Error bars of entropy methods across noise variations
Fig.5 Comparison of entropy values in non-fatigue and fatigue signals across scale factors and lengths
Fig.6 Subject 1 analysis results
受试者|K|/10?3R2
RCMDERCMFDETSMFDER2CMSERTSMSIERCMTFDERCMDERCMFDETSMFDER2CMSERTSMSIERCMTFDE
10.96241.02550.97004.77041.865211.46900.84870.56020.60750.76760.18270.8566
20.58620.40900.48542.81950.99405.29320.88740.62540.69300.87880.24020.8711
30.36990.31700.33231.66280.27133.76010.78400.47750.34320.57440.03610.7991
40.64340.78710.59003.13871.46226.29980.89960.72620.61820.83290.29290.8428
50.51080.44390.46061.87340.85414.34470.87460.50630.54600.64320.03310.7673
60.44810.84730.64430.88310.80966.01610.41260.35990.32430.11940.12340.5366
71.36970.96780.87736.20220.713914.9780.76530.55040.47270.76930.09670.7742
81.06340.88370.73915.49861.94199.17810.92880.51040.49070.90700.32690.8417
90.38670.44850.35001.98301.12163.05210.43420.33580.22700.38720.07710.4359
100.55080.67951.18013.43380.77405.51580.76910.37860.53240.83410.06780.6282
111.03871.04880.77234.64520.45199.14450.80460.38630.41880.89450.01430.8987
120.65130.78860.66793.45411.66735.75860.83180.23940.29620.84950.26710.8481
130.85481.06581.57036.02391.28007.14240.87040.46710.58310.69100.11050.8640
140.97230.97231.02524.72241.290010.0310.83710.59730.55630.88410.16790.9365
150.36950.56910.36333.42100.48374.19250.55510.21400.19640.66760.01110.6118
平均值0.71850.75020.73523.63541.06537.07830.76680.46230.46030.71330.13650.7675
标准差0.29590.24740.33441.63850.49643.17500.15900.13830.14690.21080.10120.1413
Tab.1 Quantification of muscle fatigue in each subject
Mann-Kendall参数pz
R2CMSE0.0107?4.8979
RCMDE0.0023?5.3644
RCMFDE0.0059?3.7651
RTSMSIE?1.19390.2324
TSMFDE0.0031?3.7890
RCMTFDE0.0001?5.5373
Tab.2 Mann-Kendall trend test results
特征分类器Sen/%Spe/%Pre/%F1/%A/%
iEMGSVM68.88967.77868.71068.30068.333
MFSVM66.88981.33381.27671.20474.111
RCMDESVM86.22286.00086.63685.82186.111
RCMFDESVM83.33389.77890.45286.00186.556
TSMFDESVM85.55689.55689.8987.13687.556
R2CMSESVM88.44490.88991.82389.31989.667
RTSMSIESVM71.77862.22266.37368.32767.000
RCMTFDESVM98.66794.66795.28796.80096.667
Tab.3 Results of muscle fatigue classification with different features
Fig.7 ROC curve results of each method in muscle fatigue classification
算法FDE模糊化Tsallis熵传统粗粒化平滑增强粗粒化|K|/10?3R2
FDE××××0.18790.5796
模糊化FDE×××0.50070.7361
未模糊化TFDE×××2.74600.7579
模糊化TFDE××3.82110.7607
传统粗粒化RCMTFDE×6.08540.7850
平滑增强RCMTFDE6.23340.8274
Tab.4 Ablation experiments results of RCMTFDE
[1]   GUO H, GONG P, WANG Y, et al Complex network properties analysis of muscle fatigue based on sEMG signals[J]. IEEE Sensors Journal, 2023, 23 (4): 3859- 3869
doi: 10.1109/JSEN.2022.3233047
[2]   CÈ E, LONGO S, LIMONTA E, et al Peripheral fatigue: new mechanistic insights from recent technologies[J]. European Journal of Applied Physiology, 2020, 120 (1): 17- 39
doi: 10.1007/s00421-019-04264-w
[3]   LIU Q, LIU Y, ZHANG C, et al sEMG-based dynamic muscle fatigue classification using SVM with improved whale optimization algorithm[J]. IEEE Internet of Things Journal, 2021, 8 (23): 16835- 16844
doi: 10.1109/JIOT.2021.3056126
[4]   ZHANG Y, CHEN S, CAO W, et al MFFNet: multi-dimensional feature fusion network based on attention mechanism for sEMG analysis to detect muscle fatigue[J]. Expert Systems with Applications, 2021, 185: 115639
doi: 10.1016/j.eswa.2021.115639
[5]   姚贺龙, 吕东澔, 张勇, 等 基于傅里叶分解方法的肌肉疲劳状态分类研究[J]. 电子测量与仪器学报, 2023, 37 (6): 48- 58
YAO Helong, LYU Donghao, ZHANG Yong, et al Study of muscle fatigue state classification based on Fourier decomposition method[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37 (6): 48- 58
[6]   何恺伦, 吕健, 李林, 等 基于表面肌电与步态的外骨骼穿戴疲劳评测[J]. 浙江大学学报: 工学版, 2023, 57 (10): 2077- 2085
HE Kailun, LV Jian, LI Lin, et al Evaluation of exoskeleton wearing fatigue based on surface electromyography and gait[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (10): 2077- 2085
[7]   BIRNBAUM S, SHARSHAR T, ROPERS J, et al Neuromuscular fatigue in autoimmune myasthenia gravis: a cross-sectional study[J]. Neurophysiologie Clinique, 2023, 53 (4): 102844
doi: 10.1016/j.neucli.2023.102844
[8]   SHANKHWAR V, SINGH D, DEEPAK K K Characterization of electromyographical signals from biceps and rectus femoris muscles to evaluate the performance of squats coupled with countermeasure gravitational load modulating bodygear[J]. Microgravity Science and Technology, 2021, 33 (4): 49
doi: 10.1007/s12217-021-09899-z
[9]   SAMANN F, HUBICH F, OTT T, et al Muscle fatigue detection based on sEMG signal using autocorrelation function and neural networks[J]. At-Automatisierungstechnik, 2024, 72 (5): 408- 416
doi: 10.1515/auto-2023-0207
[10]   YU J, ZHANG L, DU Y, et al Exploration and application of a muscle fatigue assessment model based on NMF for multi-muscle synergistic movements[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 1725- 1734
doi: 10.1109/TNSRE.2024.3393132
[11]   HU W W, HUANG Y C, LI C P Improved algorithm of muscle fatigue detection using linear regression analysis[J]. Electronics Letters, 2013, 49 (2): 89- 91
doi: 10.1049/el.2012.2316
[12]   XIE H, WANG Z Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis[J]. Computer Methods and Programs in Biomedicine, 2006, 82 (2): 114- 120
doi: 10.1016/j.cmpb.2006.02.009
[13]   XIE H B, GUO J Y, ZHENG Y P Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals[J]. Annals of Biomedical Engineering, 2010, 38 (4): 1483- 1496
doi: 10.1007/s10439-010-9933-5
[14]   GONZÁLEZ-IZAL M, MALANDA A, GOROSTIAGA E, et al Electromyographic models to assess muscle fatigue[J]. Journal of Electromyography and Kinesiology, 2012, 22 (4): 501- 512
doi: 10.1016/j.jelekin.2012.02.019
[15]   MURILLO-ESCOBAR J, JARAMILLO-MUNERA Y E, ORREGO-METAUTE D A, et al Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy[J]. Mathematical Biosciences and Engineering, 2020, 17 (3): 2592- 2615
doi: 10.3934/mbe.2020142
[16]   MAKARAM N, KARTHICK P A, SWAMINATHAN R Analysis of dynamics of EMG signal variations in fatiguing contractions of muscles using transition network approach[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 4003608
[17]   HU B, WANG Y, MU J A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection[J]. Mathematical Biosciences and Engineering, 2024, 21 (1): 144- 169
[18]   JAMIN A, HUMEAU-HEURTIER A (multiscale) cross-entropy methods: a review[J]. Entropy, 2020, 22 (1): 45
[19]   COSTA M, GOLDBERGER A L, PENG C K. Multiscale entropy analysis of biological signals [J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(2 Pt 1): 021906.
[20]   WANG S, TANG H, WANG B, et al Analysis of fatigue in the biceps brachii by using rapid refined composite multiscale sample entropy[J]. Biomedical Signal Processing and Control, 2021, 67: 102510
doi: 10.1016/j.bspc.2021.102510
[21]   SUN Y, CAO Y, LI P, et al Vibration-based fault diagnosis for railway point machines using VMD and multiscale fluctuation-based dispersion entropy[J]. Chinese Journal of Electronics, 2024, 33 (3): 803- 813
doi: 10.23919/cje.2022.00.075
[22]   SU H, WANG Z, CAI Y, et al Refined composite multiscale fluctuation dispersion entropy and supervised manifold mapping for planetary gearbox fault diagnosis[J]. Machines, 2023, 11 (1): 47
doi: 10.3390/machines11010047
[23]   WANG X, JIANG H Gearbox fault diagnosis based on refined time-shift multiscale reverse dispersion entropy and optimised support vector machine[J]. Machines, 2023, 11 (6): 646
doi: 10.3390/machines11060646
[24]   ZHENG J, WANG J, PAN H, et al Refined time-shift multiscale slope entropy: a new nonlinear dynamic analysis tool for rotating machinery fault feature extraction[J]. Nonlinear Dynamics, 2024, 112 (22): 19887- 19915
doi: 10.1007/s11071-024-10106-y
[25]   AZAMI H, ESCUDERO J Amplitude- and fluctuation-based dispersion entropy[J]. Entropy, 2018, 20 (3): 210
doi: 10.3390/e20030210
[26]   PATEL P, BALASUBRAMANIAN S, ANNAVARAPU R N Cross subject emotion identification from multichannel EEG sub-bands using Tsallis entropy feature and KNN classifier[J]. Brain Informatics, 2024, 11 (1): 7
doi: 10.1186/s40708-024-00220-3
[27]   CHEN Z, WU C, WANG J, et al Tsallis entropy-based complexity-IPE casualty plane: a novel method for complex time series analysis[J]. Entropy, 2024, 26 (6): 521
doi: 10.3390/e26060521
[28]   曹震, 吕东澔, 张勇, 等 基于sEMG信号几何特征的肌肉疲劳分类[J]. 传感器与微系统, 2024, 43 (7): 145- 148
CAO Zhen, LV Donghao, ZHANG Yong, et al Muscle fatigue classification based on geometric features of sEMG signal[J]. Transducer and Microsystem Technologies, 2024, 43 (7): 145- 148
[29]   WANG Y, SHANG P Complexity analysis of time series based on generalized fractional order refined composite multiscale dispersion entropy[J]. International Journal of Bifurcation and Chaos, 2020, 30 (14): 2050211
doi: 10.1142/S0218127420502119
[30]   徐哲熙, 刘婷, 任晟民, 等 基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断[J]. 工程科学与技术, 2024, 56 (3): 41- 51
XU Zhexi, LIU Ting, REN Shengmin, et al Fault diagnosis method of hydropower units based on time-shifted multiscale fluctuation dispersion entropy and improved kernel extreme learning machine[J]. Advanced Engineering Sciences, 2024, 56 (3): 41- 51
[1] Yanpu YANG,Zhihong WU,Wenhao MENG,Yueming ZHUO,Jialing LIU. Upper-limb muscle fatigue assessment in overhead work based on Hammerstein model and surface electromyography[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2483-2494.
[2] Kai-lun HE,Jian LV,Lin LI,Zhao XU,Wei-jie PAN. Evaluation of exoskeleton wearing fatigue based on surface electromyography and gait[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2077-2085.
[3] Tian-zhong HU,Jian-bo YU. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1852-1864.
[4] YANG Bing, WANG Xiao-hua, YANG Xin, HUANG Xiao-xi. Face recognition method based on HOG pyramid[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1564-1569.