Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (9): 1954-1963    DOI: 10.3785/j.issn.1008-973X.2025.09.019
    
Human-machine collaborative planning and shared control considering driving intention
Zili LI1(),Bing ZHOU1,*(),Yangyi LIU1,Tian CHAI1,Nianfei GAN1,2,Qingjia CUI1
1. State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
2. Innovation Institute of Industrial Design and Machine Intelligence of Quanzhou-Hunan University, Quanzhou 362000, China
Download: HTML     PDF(2102KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A human-machine co-driving framework considering driving intention was proposed to address the human-machine conflicts caused by the goal misalignment between natural drivers and automated systems in human-machine co-driving process. The framework integrated a vehicle kinematic model with the driver’s steering commands to generate short-term predictive trajectories that represented driver intention. The road environment was discretized into free units through the Delaunay triangulation algorithm and a heuristic graph search algorithm was employed to generate the desired feasible regions online. By incorporating feasible region boundaries and vehicle stability constraints into the model predictive control (MPC)-based optimization problem, a shared controller was designed with the objective of minimizing human-machine control deviation, which maximized the driver’s operational freedom. Simulation results demonstrated that the proposed planning and control strategy not only exceled in ensuring driving safety but also fully considered the driver’s behavioral intention, significantly enhancing the driver’s acceptance of the driving assistance systems. The proposed human-machine co-driving framework achieved an integrated coupling of planning and control at the algorithmic level, offering a novel approach for realizing efficient human-machine cooperation based on driving intention.



Key wordshuman-machine conflict      driving intention      Delaunay triangulation      heuristic search algorithm      model predictive control     
Received: 31 December 2024      Published: 25 August 2025
CLC:  U 461.1  
Fund:  国家自然科学基金资助项目(52202466);福建省自然科学基金资助项目(2023J01245).
Corresponding Authors: Bing ZHOU     E-mail: wHyslee@163.com;zhou_bingo@163.com
Cite this article:

Zili LI,Bing ZHOU,Yangyi LIU,Tian CHAI,Nianfei GAN,Qingjia CUI. Human-machine collaborative planning and shared control considering driving intention. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1954-1963.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.09.019     OR     https://www.zjujournals.com/eng/Y2025/V59/I9/1954


考虑驾驶意图的人机协同规划和共享控制

为了解决自然驾驶人与自动化系统在共驾过程中因目标不一致而引发的人机冲突问题,提出考虑驾驶意图的人机共驾框架. 该框架结合车辆运动学模型与驾驶员转向命令,生成短期预测轨迹以表征驾驶员意图,并利用德洛内三角剖分算法将道路环境离散为空闲单元,采用启发式图搜索算法在线生成期望可行域. 将可行域边界与车辆稳定性约束引入基于模型预测控制的优化问题中,建立以人机控制偏差最小化为目标的共享控制器,从而最大限度地保留驾驶员的操控自由. 仿真结果表明,提出的规划与控制策略不仅有效保证了车辆安全行驶,同时充分考虑了驾驶员的行为意图,有效提高了驾驶员对辅助驾驶系统的接受度. 所提人机共驾框架在算法层面实现了规划与控制的有机耦合,为实现基于驾驶意图的人机高效协同驾驶提供了新思路.


关键词: 人机冲突,  驾驶意图,  德洛内三角,  启发式搜索算法,  模型预测控制 
Fig.1 Human-machine co-driving framework considering driving intention
Fig.2 Schematic diagram of predicted vehicle trajectory using single-trajectory model
Fig.3 Environmental identification and discretization
Fig.4 Heuristic-based search for desired feasible regions
Fig.5 2DOF vehicle dynamic model
Fig.6 Local linearization of tire lateral force model
Fig.7 Structured road simulation scenario
参数数值参数数值
m/kg1 554NC10
Iz/(kg·m2)2 391NP20
lf/m1.015hs/s0.05
lr/m1.895hl/s0.20
d/m1.916wcf2
Tab.1 Vehicle and controller parameters
Fig.8 Vehicle trajectory and state during left-side obstacle avoidance
Fig.9 Feasible region results at different time steps in feasibility verification
Fig.10 Intervention results of driver intention shared controller
Fig.11 Feasible region results at different time steps during controller verification
Fig.12 Intervention results of trajectory tracking shared controller
Fig.13 Authority allocation coefficient of trajectory tracking shared controller
[1]   李淑庆, 彭囿朗, 肖莉英, 等 道路交通事故发生机理研究现状与趋势分析[J]. 安全与环境学报, 2014, 14 (3): 14- 19
LI Shuqing, PENG Youlang, XIAO Liying, et al Analysis of the mechanism of the road traffic accidents in-situ and the future research trends[J]. Journal of Safety and Environment, 2014, 14 (3): 14- 19
[2]   高轶男, 巩建强 我国道路交通事故特征及致因分析[J]. 安全与环境学报, 2023, 23 (11): 4013- 4023
GAO Yinan, GONG Jianqiang Characteristics and mechanism of road traffic accidents[J]. Journal of Safety and Environment, 2023, 23 (11): 4013- 4023
[3]   ROTHFUß S, SCHMIDT R, FLAD M, et al. A concept for human-machine negotiation in advanced driving assistance systems [C]// IEEE International Conference on Systems, Man and Cybernetics. Bari: IEEE, 2019: 3116–3123.
[4]   ANDERSON S J, KARUMANCHI S B, IAGNEMMA K. Constraint-based planning and control for safe, semi-autonomous operation of vehicles [C]// IEEE Intelligent Vehicles Symposium. Madrid: IEEE, 2012: 383–388.
[5]   WU Y, WEI H, CHEN X, et al Adaptive authority allocation of human-automation shared control for autonomous vehicle[J]. International Journal of Automotive Technology, 2020, 21 (3): 541- 553
doi: 10.1007/s12239-020-0051-6
[6]   方浩杰, 董红召, 林少轩, 等 多特征融合的驾驶员疲劳状态检测方法[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1287- 1296
FANG Haojie, DONG Hongzhao, LIN Shaoxuan, et al Driver fatigue state detection method based on multi-feature fusion[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1287- 1296
[7]   孙剑, 张一豪, 王俊骅 基于自然驾驶数据的分心驾驶行为识别方法[J]. 中国公路学报, 2020, 33 (9): 225- 235
SUN Jian, ZHANG Yihao, WANG Junhua Detecting distraction behavior of drivers using naturalistic driving data[J]. China Journal of Highway and Transport, 2020, 33 (9): 225- 235
doi: 10.3969/j.issn.1001-7372.2020.09.022
[8]   刘志强, 吴雪刚, 倪捷, 等 基于HMM和SVM级联算法的驾驶意图识别[J]. 汽车工程, 2018, 40 (7): 858- 864
LIU Zhiqiang, WU Xuegang, NI Jie, et al Driving intention recognition based on HMM and SVM cascade algorithm[J]. Automotive Engineering, 2018, 40 (7): 858- 864
[9]   喻恺, 彭理群, 丁雪, 等 面向人机协同共驾的驾驶行为短时预测方法研究[J]. 交通信息与安全, 2019, 37 (1): 42- 48
YU Kai, PENG Liqun, DING Xue, et al A study on the short-time forecasting method of operation behaviors of drivers for man-machine cooperative driving[J]. Journal of Transport Information and Safety, 2019, 37 (1): 42- 48
[10]   BENLOUCIF A, NGUYEN A T, SENTOUH C, et al Cooperative trajectory planning for haptic shared control between driver and automation in highway driving[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (12): 9846- 9857
doi: 10.1109/TIE.2019.2893864
[11]   JIANG B, LI X, ZENG Y, et al Human-machine cooperative trajectory planning for semi-autonomous driving based on the understanding of behavioral semantics[J]. Electronics, 2021, 10 (8): 946
doi: 10.3390/electronics10080946
[12]   KOO Y, KIM J, HAN W. A method for driving control authority transition for cooperative autonomous vehicle [C]// IEEE Intelligent Vehicles Symposium. Seoul: IEEE, 2015: 394–399.
[13]   ZEEB K, BUCHNER A, SCHRAUF M What determines the take-over time? An integrated model approach of driver take-over after automated driving[J]. Accident Analysis & Prevention, 2015, 78: 212- 221
[14]   LOUW T, MARKKULA G, BOER E, et al Coming back into the loop: drivers’ perceptual-motor performance in critical events after automated driving[J]. Accident Analysis & Prevention, 2017, 108: 9- 18
[15]   张文镝, 周诗婕, 金海亮, 等 自动驾驶系统中人机协同的认知决策一体化机制研究[J]. 汽车文摘, 2023, (9): 11- 18
ZHANG Wendi, ZHOU Shijie, JIN Hailiang, et al Research on cognitive decision integration mechanism of human machine collaboration in automated driving system[J]. Automotive Digest, 2023, (9): 11- 18
[16]   何仁, 赵晓聪, 杨奕彬, 等 基于驾驶人风险响应机制的人机共驾模型[J]. 吉林大学学报: 工学版, 2021, 51 (3): 799- 809
HE Ren, ZHAO Xiaocong, YANG Yibin, et al Man-machine shared driving model using risk-response mechanism of human driver[J]. Journal of Jilin University: Engineering and Technology Edition, 2021, 51 (3): 799- 809
[17]   LI M, CAO H, LI G, et al A two-layer potential-field-driven model predictive shared control towards driver-automation cooperation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (5): 4415- 4431
doi: 10.1109/TITS.2020.3044666
[18]   宗长富, 代昌华, 张东 智能汽车的人机共驾技术研究现状和发展趋势[J]. 中国公路学报, 2021, 34 (6): 214- 237
ZONG Changfu, DAI Changhua, ZHANG Dong Human-machine interaction technology of intelligent vehicles: current development trends and future directions[J]. China Journal of Highway and Transport, 2021, 34 (6): 214- 237
[19]   ERLIEN S M, FUJITA S, GERDES J C Shared steering control using safe envelopes for obstacle avoidance and vehicle stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (2): 441- 451
doi: 10.1109/TITS.2015.2453404
[20]   HUANG C, HANG P, WU J, et al. Reference-free human-automation shared control for obstacle avoidance of automated vehicles [C]// IEEE International Conference on Systems, Man, and Cybernetics. Toronto: IEEE, 2020: 4398–4403.
[21]   CONSTANTIN A, PARK J, IAGNEMMA K. A margin-based approach to threat assessment for autonomous highway navigation [C]// IEEE Intelligent Vehicles Symposium Proceedings. Dearborn: IEEE, 2014: 234–239.
[22]   FALCONE P, BORRELLI F, TSENG H E, et al Linear time-varying model predictive control and its application to active steering systems: stability analysis and experimental validation[J]. International Journal of Robust and Nonlinear Control, 2008, 18 (8): 862- 875
doi: 10.1002/rnc.1245
[23]   BHARILYA V, KUMAR N Machine learning for autonomous vehicle’s trajectory prediction: a comprehensive survey, challenges, and future research directions[J]. Vehicular Communications, 2024, 46: 100733
doi: 10.1016/j.vehcom.2024.100733
[24]   闫宏阳. 基于限定Delaunay三角剖分的移动机器人路径规划[D]. 北京: 北京工业大学, 2008.
YAN Hongyang. Path planning for mobile robots based on constrained Delaunay triangulation [D]. Beijing: Beijing University of Technology, 2008.
[25]   CUI Q, DING R, WEI C, et al Path-tracking and lateral stabilisation for autonomous vehicles by using the steering angle envelope[J]. Vehicle System Dynamics, 2021, 59 (11): 1672- 1696
doi: 10.1080/00423114.2020.1776344
[26]   龚建伟, 刘凯, 齐建永. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2020: 189–191.
[27]   GUO W, TENG Z, SONG X, et al Toward consumer acceptance of cooperative driving systems: a human-centered shared steering control approach within a hierarchical framework[J]. IEEE Transactions on Consumer Electronics, 2024, 70 (1): 635- 645
doi: 10.1109/TCE.2024.3357985
[1] Qi WEI,Jianfeng TAO,Hao SUN,Yulei ZHANG,Chengliang LIU. Nonlinear model predictive trajectory tracking for valve-controlled cylinder with counterbalance valve[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1565-1573.
[2] Wenqiang CHEN,Dongdan WANG,Wenying ZHU,Yongjie WANG,Tao WANG. Vehicle multimodal trajectory prediction model based on spatio-temporal graph attention network[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 443-450.
[3] Haipeng QIN,Rui QIN,Xiaofen SHI,Xiaoming ZHU. Motion control of quadruped robot based on model prediction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1565-1576.
[4] Junhui ZHANG,Xiaoman GUO,Jingxian WANG,Zongjie FU,Yuxi LIU. Shared lane-keeping control based on non-cooperative game theory[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1001-1008.
[5] Jun-guang LIN,Ya-min ZHOU,Yan-hao FENG,Cong MA,Fan WU,Meng-lian ZHENG,Zi-tao YU. Optimal scheduling of microgrid based on heat and humidity load with adaptive prediction horizon length[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1832-1842.
[6] Wei TAN,Jing-sheng LIU,Hui ZU,Hong-qian QUAN. Intelligent vehicle path tracking control under parametric uncertainties and external disturbances[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 702-711.
[7] Wei-liang XIONG,De-feng HE,Xiu-li WANG,Dan ZHOU. Scenario optimization robust predictive control via Gaussian regression learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 693-701.
[8] Dong-dong JIANG,Dao-fei LI,Xiao-li YU. Model predictive control energy management based ondriver demand torque prediction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1325-1334.
[9] Jia-tao DING,Jie HE,Lin-zhi LI,Xiao-hui XIAO. Real-time walking pattern optimization for humanoid robot based on model predictive control[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1843-1851.
[10] ZHENG Peng-yuan, WANG Zhen-zhen, XIANG Zhen-dong, FENG Dong-han. Mixed multi-step feedback model predictive control for linear varying systems with measurable parameters[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 703-709.
[11] YANG Qing-fang, ZHAO Xiao-hui, ZHENG Li-li, ZHANG Wei. Signal timing method for roundabouts based on model predictive control[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 117-124.
[12] CHU Liang, LI Tian-jiao, SUN Cheng-wei. Research on adaptive cruise control strategy for electric vehicle based on optimization of regenerative braking[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1596-1602.
[13] LI Guo-fei, TENG Qing-fang, WANG Chuan-lu, ZHANG Ya-qin. FCS-MPC strategy with sliding mode control for PMSM systems driven by four-switch inverters[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 620-627.
[14] WANG Xuan, TAO Jian feng, ZHANG Feng rong, WU Ya jin, LIU Cheng liang. Precision position control of pump controlled asymmetric cylinder[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 597-602.
[15] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 750-758.