1. Zhejiang Energy Group Research Institute Limited Company, Hangzhou 311100, China 2. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
In order to improve the flexibility of combined cooling, heating and power (CCHP) microgrid and to reduce load fluctuation, the effect of building humidity load participation in day-ahead demand response and the adaptive intra-day prediction horizon length were studied. In the day-ahead time domain, a cooling load demand response model including the building humidity load was constructed. In the intra-day time domain, a model prediction control (MPC) method with adaptive prediction horizon lengths based on the variance of the predicted load was proposed. The effects of the demand response of the cold load containing humidity load on the total economic cost and the storage capacity of the storage tank under the time-of-day tariff were analyzed during the day-ahead time domain. The effects of the impact of using the MPC method with adaptive prediction horizon lengths on the calculation time, the cost and the working status of various types of equipment were analyzed during the intra-day time domain. Results showed that the cooling load demand response considering the humidity load reduced the cost of the day-ahead scheduling by 7.75%. The MPC method with adaptive prediction horizon lengths not only balances the calculation time and the cost, but also increases the storage and smoothes the output of the gas-fired internal combustion engine in the intra-day time domain.
Jun-guang LIN,Ya-min ZHOU,Yan-hao FENG,Cong MA,Fan WU,Meng-lian ZHENG,Zi-tao YU. Optimal scheduling of microgrid based on heat and humidity load with adaptive prediction horizon length. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1832-1842.
骆钊, 刘德文, 沈鑫, 等 综合能源系统优化运行技术研究综述[J]. 电力建设, 2022, 43 (12): 3- 14 LUO Zhao, LIU De-wen, SHEN Xin, et al Review of research on optimal operation technology of intergrated energy system[J]. Electric Power Construction, 2022, 43 (12): 3- 14
[3]
刘艳峰, 刘正学, 罗西, 等 基于柔性负荷的孤立多能互补建筑能源系统优化设计[J]. 太阳能学报, 2022, 43 (6): 24- 32 LIU Yan-feng, LIU Zheng-xue, LUO Xi, et al Design of isolated multi-energy complementary building energy system based on flexible load[J]. Acta Energiae Solaris Sinica, 2022, 43 (6): 24- 32
[4]
靳小龙, 穆云飞, 贾宏杰, 等 融合需求侧虚拟储能系统的冷热电联供楼宇微网优化调度方法[J]. 中国电机工程学报, 2017, 37 (2): 581- 591 JIN Xiao-long, MU Yun-fei, JIA Hong-jie, et al Optimal scheduling method for a combined cooling, heating and power building microgrid considering virtual storage system at demand side[J]. Proceedings of the CSEE, 2017, 37 (2): 581- 591
[5]
蔡志宏, 吴杰康, 王瑞东, 等 考虑空调群虚拟储能的配电网电压无功协同控制研究[J]. 电力需求侧管理, 2021, 23 (6): 63- 68 CAI Zhi-hong, WU Jie-kang, WANG Rui-dong, et al Coordinated control research for voltage and reactive power of distribution network considering virtual energy storage of air-conditionings[J]. Power Demand Side Management, 2021, 23 (6): 63- 68
[6]
葛少云, 刘静仪, 刘洪, 等 需求响应机制下含建筑虚拟储能的能源站经济调度[J]. 电力系统自动化, 2020, 44 (4): 35- 43 GE Shao-yun, LIU Jing-yi, LIU Hong, et al Economic dispatch of energy station with building virtual energy storage in demand response mechanism[J]. Automation of Electric Power Systems, 2020, 44 (4): 35- 43
[7]
陈厚合, 李泽宁, 靳小龙, 等 集成智能楼宇的主动配电网建模及优化方法[J]. 中国电机工程学报, 2018, 38 (22): 6550- 6563 CHEN Hou-he, LI Ze-ning, JIN Xiao-long, et al Modeling and optimization of active distribution network with integrated smart buildings[J]. Proceedings of the CSEE, 2018, 38 (22): 6550- 6563
[8]
YUAN J, XIAO Z, CHEN X, et al A temperature and humidity setback demand response strategy for HVAC systems[J]. Sustainable Cities and Society, 2021, 75: 103393
doi: 10.1016/j.scs.2021.103393
[9]
曹昉, 郭培林, 孙畅 基于能耗模拟的精密空调温湿度协同优化控制[J]. 现代电力, 2017, 34 (5): 22- 29 CAO Fang, GUO Pei-lin, SUN Chang Cooperative optimal control on temperature and humidity of precision air conditioning based on energy consumption simulation[J]. Modern Electric Power, 2017, 34 (5): 22- 29
[10]
MORARI M, LEE J H Model predictive control: past, present and future[J]. Computers and Chemical Engineering, 1999, 23 (4/5): 667- 682
[11]
FOROUGH A B, ROSHANDEL R Lifetime optimization framework for a hybrid renewable energy system based on receding horizon optimization[J]. Energy, 2018, 150: 617- 630
doi: 10.1016/j.energy.2018.02.158
[12]
吴鸣, 骆钊, 季宇, 等 基于模型预测控制的冷热电联供型微网动态优化调度[J]. 中国电机工程学报, 2017, 37 (24): 7174- 7184 WU Ming, LUO Zhao, JI Yu, et al Optimal dynamic dispatch for combined cooling heating and power microgrid based on model predictive control[J]. Proceedings of the CSEE, 2017, 37 (24): 7174- 7184
[13]
张风晓, 靳小龙, 穆云飞, 等 融合虚拟储能系统的楼宇微网模型预测调控方法[J]. 中国电机工程学报, 2018, 38 (15): 4420- 4428 ZHANG Feng-xiao, JIN Xiao-long, MU Yun-fei, et al Model predictive scheduling method for a building microgrid considering virtual storage system[J]. Proceedings of the CSEE, 2018, 38 (15): 4420- 4428
doi: 10.13334/j.0258-8013.pcsee.171707
[14]
朱飞宇, 徐志宇, 许维胜, 等 计及多类型需求响应的风-火-荷两阶段协同调度[J]. 电工电能新技术, 2020, 39 (1): 12- 21 ZHU Fei-yu, XU Zhi-yu, XU Wei-sheng, et al A two-stage coordinated dispatch of wind power, thermal power and system load with multi-type demand response[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39 (1): 12- 21
[15]
张弛, 曾杰, 张威, 等 含混合储能的独立微电网多时间尺度协调控制策略[J]. 现代电力, 2020, 37 (1): 74- 82 ZHANG Chi, ZENG Jie, ZHANG Wei, et al Multi-time scale coordination control strategy of isolated microgrid with hybrid energy storage[J]. Modern Electric Power, 2020, 37 (1): 74- 82
[16]
孙惠娟, 张乐乐, 彭春华 基于差异化需求响应模型预测控制的微网时域滚动优化调度[J]. 电网技术, 2021, 45 (8): 3096- 3105 SUN Hui-juan, ZHANG Le-le, PENG Chun-hua Time-domain rolling optimal scheduling of microgrid based on differential demand response model predictive control[J]. Power System Technology, 2021, 45 (8): 3096- 3105
doi: 10.13335/j.1000-3673.pst.2020.1507
[17]
LUO Z, WU Z, LI Z, et al A two-stage optimization and control for CCHP microgrid energy management[J]. Applied Thermal Engineering, 2017, 125: 513- 522
doi: 10.1016/j.applthermaleng.2017.05.188
[18]
JIN X L, WU J, MU Y, et al Hierarchical microgrid energy management in an office building[J]. Applied Energy, 2017, 208: 480- 494
doi: 10.1016/j.apenergy.2017.10.002
[19]
刘立阳, 吴军基, 孟绍良 基于预测控制的含风电滚动优化调度[J]. 电工技术学报, 2017, 32 (17): 75- 83 LIU Li-yang, WU Jun-ji, MENG Shao-liang A rolling dispatch model for wind power integrated power system based on predictive control[J]. Transactions of China Electrotechnical Society, 2017, 32 (17): 75- 83
doi: 10.19595/j.cnki.1000-6753.tces.161373
[20]
MA J R, QIN J, SALSBURY T, et al Demand reduction in building energy systems based on economic model predictive control[J]. Chemical Engineering Science, 2012, 67 (1): 92- 100
doi: 10.1016/j.ces.2011.07.052
ZHAO H, MAGOULÈS F A review on the prediction of building energy consumption[J]. Renewable and Sustainable Energy Reviews, 2012, 16 (6): 3586- 3592
doi: 10.1016/j.rser.2012.02.049
[24]
邓剑波, 马瑞, 胡振文, 等 基于改进粒子群算法的冷热电联供微网优化调度[J]. 电力科学与技术学报, 2018, 33 (2): 35- 42 DENG Jian-bo, MA Rui, HU Zhen-wen, et al Optimal scheduling of micro grid with CCHP systems based on improved particle swarm optimization algorithm[J]. Journal of Electric Power Science and Technology, 2018, 33 (2): 35- 42
[25]
邓佳乐, 胡林献, 邵世圻, 等 电热联合系统多时间尺度滚动调度策略[J]. 电网技术, 2016, 40 (12): 3796- 3803 DENG Jia-le, HU Lin-xian, SHAO Shi-qi, et al Multi-time scale rolling scheduling method for combined heat and power system[J]. Power System Technology, 2016, 40 (12): 3796- 3803
[26]
周晓君, 阳春华, 桂卫华, 等 带可变随机函数和变异算子的粒子群优化算法(英文)[J]. 自动化学报, 2014, 40 (7): 1339- 1347 ZHOU Xiao-jun, YANG Chun-hua, GUI Wei-hua, et al A particle swarm optimization algorithm with variable random functions and mutation[J]. Acta Automatica Sinica, 2014, 40 (7): 1339- 1347
doi: 10.1016/S1874-1029(14)60015-X