Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1832-1842    DOI: 10.3785/j.issn.1008-973X.2023.09.015
    
Optimal scheduling of microgrid based on heat and humidity load with adaptive prediction horizon length
Jun-guang LIN1,2(),Ya-min ZHOU2,Yan-hao FENG2,Cong MA1,Fan WU1,2(),Meng-lian ZHENG2,*(),Zi-tao YU2
1. Zhejiang Energy Group Research Institute Limited Company, Hangzhou 311100, China
2. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1572KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the flexibility of combined cooling, heating and power (CCHP) microgrid and to reduce load fluctuation, the effect of building humidity load participation in day-ahead demand response and the adaptive intra-day prediction horizon length were studied. In the day-ahead time domain, a cooling load demand response model including the building humidity load was constructed. In the intra-day time domain, a model prediction control (MPC) method with adaptive prediction horizon lengths based on the variance of the predicted load was proposed. The effects of the demand response of the cold load containing humidity load on the total economic cost and the storage capacity of the storage tank under the time-of-day tariff were analyzed during the day-ahead time domain. The effects of the impact of using the MPC method with adaptive prediction horizon lengths on the calculation time, the cost and the working status of various types of equipment were analyzed during the intra-day time domain. Results showed that the cooling load demand response considering the humidity load reduced the cost of the day-ahead scheduling by 7.75%. The MPC method with adaptive prediction horizon lengths not only balances the calculation time and the cost, but also increases the storage and smoothes the output of the gas-fired internal combustion engine in the intra-day time domain.



Key wordscombined cooling, heating and power (CCHP)      heat and humidity load      optimal scheduling      model predictive control (MPC)      adaptive prediction horizon length     
Received: 09 November 2022      Published: 16 October 2023
CLC:  TM 73  
Fund:  国家重点研发计划项目(2019YFE0126000);浙江浙能技术研究院有限公司科技项目(No. ZNKJ-2019-087)
Corresponding Authors: Meng-lian ZHENG     E-mail: linjg_008@163.com;danfan@zju.edu.cn;menglian_zheng@zju.edu.cn
Cite this article:

Jun-guang LIN,Ya-min ZHOU,Yan-hao FENG,Cong MA,Fan WU,Meng-lian ZHENG,Zi-tao YU. Optimal scheduling of microgrid based on heat and humidity load with adaptive prediction horizon length. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1832-1842.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.015     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1832


基于热湿负荷与自适应预测时域微网优化调度

为了提升建筑冷热电联供(CCHP)微网灵活性并减少负荷波动,开展建筑湿负荷参与日前需求响应的效果和日内预测时域的自适应调节方法研究. 在日前阶段,构建包含建筑湿负荷的冷负荷需求响应模型;在日内阶段,提出基于预测负荷方差的自适应预测时域模型预测控制(MPC)方法. 在日前阶段,分析分时电价下包含湿负荷的冷负荷需求响应对总经济成本和蓄能水罐蓄冷量的影响;在日内阶段,分析采用自适应预测时域MPC方法对计算时间、成本和各类设备工作状态的影响. 结果表明,考虑湿负荷的冷负荷需求响应降低了日前阶段成本7.75%;在日内阶段,自适应预测时域MPC方法不仅能够平衡计算时间和成本,还能够增加蓄能量和平滑燃气内燃机出力.


关键词: 冷热电联供(CCHP),  热湿负荷,  优化调度,  模型预测控制(MPC),  自适应预测时域 
Fig.1 Schematic of combined cooling, heating and power microgrid
Fig.2 Schematic of adaptive prediction horizon for model predictive control
Fig.3 Electricity, cold (sensible heat part), humidity load and time-of-use tariff during day-ahead scheduling
参数 数值 参数 数值 参数 数值
$ P_{{\text{gt,e}}}^{\max } $/kW 1 000 $ P_{{\text{ac,c}}}^{\max } $/kW 1 300 $ P_{{\text{ec,c}}}^{\max } $/kW 600
$ P_{{\text{bt}}}^{\max } $/kW 500 $ P_{{\text{bt}}}^{\min } $/kW 0 $ P_{{\text{wt}}}^{\max } $/kW 500
$ P_{{\text{wt}}}^{\min } $/kW 0 $ W_{{\text{bt}}}^{\max } $/kW·h 2 000 eac 1.2
$ W_{{\text{wt}}}^{\max } $/kW·h 2 000 ηbt_c 0.8 ηbt_d 0.8
ηwt_c 0.8 ηwt_d 0.8
Tab.1 Techno-economic parameters for each device in microgrid
参数 数值 参数 数值
$\theta_{\text{R} }^{\min }$/℃ 24 $\theta_{\text{R} }^{\max }$/℃ 28
$ \phi _{{\text{RH,R}}}^{\min } $ 0.4 $ \phi _{{\text{RH,R}}}^{\max } $ 0.7
Rgas / (元?m?3) 2.8 Rrm_gt/ (元?kW?1?h?1) 0.03
Rrm_ac/ (元?kW?1?h?1) 0.025 Rrm_ec/(元?kW?1?h?1) 0.01
Rrm_bt/ (元?kW?1?h?1) 0.02 Rrm_wt/ (元?kW?1?h?1) 0.13
Tab.2 Parameter settings for humidity load demand response and costs
Fig.4 Comparisons between optimization results obtained by different particle swarm optimization algorithms for day-ahead scheduling
Fig.5 Cooling load shifting of each case during day-ahead scheduling
Fig.6 Indoor temperature and relative humidity of each case during day-ahead scheduling
Fig.7 Grid electricity load and stored cooling energy in water tank of each case during day-ahead scheduling
Fig.8 Day-ahead/intra-day loads and results of different constant prediction horizons
Fig.9 Intra-day change of prediction horizon with adaptive prediction horizon length scheme
预测时域方案 C2/ (元?d?1) ta/s ψ
自适应 11 777 4 481 4.76
固定3 h 12 360 2 725 5.08
固定7 h 11 623 6 688 4.92
Tab.3 Comparison of results obtained by constant and adaptive prediction horizons
Fig.10 Comparison of results for each device by adaptive and constant prediction horizons
[1]   清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2022 (公共建筑专题) [M]. 北京: 中国建筑工业出版社, 2022: 7.
[2]   骆钊, 刘德文, 沈鑫, 等 综合能源系统优化运行技术研究综述[J]. 电力建设, 2022, 43 (12): 3- 14
LUO Zhao, LIU De-wen, SHEN Xin, et al Review of research on optimal operation technology of intergrated energy system[J]. Electric Power Construction, 2022, 43 (12): 3- 14
[3]   刘艳峰, 刘正学, 罗西, 等 基于柔性负荷的孤立多能互补建筑能源系统优化设计[J]. 太阳能学报, 2022, 43 (6): 24- 32
LIU Yan-feng, LIU Zheng-xue, LUO Xi, et al Design of isolated multi-energy complementary building energy system based on flexible load[J]. Acta Energiae Solaris Sinica, 2022, 43 (6): 24- 32
[4]   靳小龙, 穆云飞, 贾宏杰, 等 融合需求侧虚拟储能系统的冷热电联供楼宇微网优化调度方法[J]. 中国电机工程学报, 2017, 37 (2): 581- 591
JIN Xiao-long, MU Yun-fei, JIA Hong-jie, et al Optimal scheduling method for a combined cooling, heating and power building microgrid considering virtual storage system at demand side[J]. Proceedings of the CSEE, 2017, 37 (2): 581- 591
[5]   蔡志宏, 吴杰康, 王瑞东, 等 考虑空调群虚拟储能的配电网电压无功协同控制研究[J]. 电力需求侧管理, 2021, 23 (6): 63- 68
CAI Zhi-hong, WU Jie-kang, WANG Rui-dong, et al Coordinated control research for voltage and reactive power of distribution network considering virtual energy storage of air-conditionings[J]. Power Demand Side Management, 2021, 23 (6): 63- 68
[6]   葛少云, 刘静仪, 刘洪, 等 需求响应机制下含建筑虚拟储能的能源站经济调度[J]. 电力系统自动化, 2020, 44 (4): 35- 43
GE Shao-yun, LIU Jing-yi, LIU Hong, et al Economic dispatch of energy station with building virtual energy storage in demand response mechanism[J]. Automation of Electric Power Systems, 2020, 44 (4): 35- 43
[7]   陈厚合, 李泽宁, 靳小龙, 等 集成智能楼宇的主动配电网建模及优化方法[J]. 中国电机工程学报, 2018, 38 (22): 6550- 6563
CHEN Hou-he, LI Ze-ning, JIN Xiao-long, et al Modeling and optimization of active distribution network with integrated smart buildings[J]. Proceedings of the CSEE, 2018, 38 (22): 6550- 6563
[8]   YUAN J, XIAO Z, CHEN X, et al A temperature and humidity setback demand response strategy for HVAC systems[J]. Sustainable Cities and Society, 2021, 75: 103393
doi: 10.1016/j.scs.2021.103393
[9]   曹昉, 郭培林, 孙畅 基于能耗模拟的精密空调温湿度协同优化控制[J]. 现代电力, 2017, 34 (5): 22- 29
CAO Fang, GUO Pei-lin, SUN Chang Cooperative optimal control on temperature and humidity of precision air conditioning based on energy consumption simulation[J]. Modern Electric Power, 2017, 34 (5): 22- 29
[10]   MORARI M, LEE J H Model predictive control: past, present and future[J]. Computers and Chemical Engineering, 1999, 23 (4/5): 667- 682
[11]   FOROUGH A B, ROSHANDEL R Lifetime optimization framework for a hybrid renewable energy system based on receding horizon optimization[J]. Energy, 2018, 150: 617- 630
doi: 10.1016/j.energy.2018.02.158
[12]   吴鸣, 骆钊, 季宇, 等 基于模型预测控制的冷热电联供型微网动态优化调度[J]. 中国电机工程学报, 2017, 37 (24): 7174- 7184
WU Ming, LUO Zhao, JI Yu, et al Optimal dynamic dispatch for combined cooling heating and power microgrid based on model predictive control[J]. Proceedings of the CSEE, 2017, 37 (24): 7174- 7184
[13]   张风晓, 靳小龙, 穆云飞, 等 融合虚拟储能系统的楼宇微网模型预测调控方法[J]. 中国电机工程学报, 2018, 38 (15): 4420- 4428
ZHANG Feng-xiao, JIN Xiao-long, MU Yun-fei, et al Model predictive scheduling method for a building microgrid considering virtual storage system[J]. Proceedings of the CSEE, 2018, 38 (15): 4420- 4428
doi: 10.13334/j.0258-8013.pcsee.171707
[14]   朱飞宇, 徐志宇, 许维胜, 等 计及多类型需求响应的风-火-荷两阶段协同调度[J]. 电工电能新技术, 2020, 39 (1): 12- 21
ZHU Fei-yu, XU Zhi-yu, XU Wei-sheng, et al A two-stage coordinated dispatch of wind power, thermal power and system load with multi-type demand response[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39 (1): 12- 21
[15]   张弛, 曾杰, 张威, 等 含混合储能的独立微电网多时间尺度协调控制策略[J]. 现代电力, 2020, 37 (1): 74- 82
ZHANG Chi, ZENG Jie, ZHANG Wei, et al Multi-time scale coordination control strategy of isolated microgrid with hybrid energy storage[J]. Modern Electric Power, 2020, 37 (1): 74- 82
[16]   孙惠娟, 张乐乐, 彭春华 基于差异化需求响应模型预测控制的微网时域滚动优化调度[J]. 电网技术, 2021, 45 (8): 3096- 3105
SUN Hui-juan, ZHANG Le-le, PENG Chun-hua Time-domain rolling optimal scheduling of microgrid based on differential demand response model predictive control[J]. Power System Technology, 2021, 45 (8): 3096- 3105
doi: 10.13335/j.1000-3673.pst.2020.1507
[17]   LUO Z, WU Z, LI Z, et al A two-stage optimization and control for CCHP microgrid energy management[J]. Applied Thermal Engineering, 2017, 125: 513- 522
doi: 10.1016/j.applthermaleng.2017.05.188
[18]   JIN X L, WU J, MU Y, et al Hierarchical microgrid energy management in an office building[J]. Applied Energy, 2017, 208: 480- 494
doi: 10.1016/j.apenergy.2017.10.002
[19]   刘立阳, 吴军基, 孟绍良 基于预测控制的含风电滚动优化调度[J]. 电工技术学报, 2017, 32 (17): 75- 83
LIU Li-yang, WU Jun-ji, MENG Shao-liang A rolling dispatch model for wind power integrated power system based on predictive control[J]. Transactions of China Electrotechnical Society, 2017, 32 (17): 75- 83
doi: 10.19595/j.cnki.1000-6753.tces.161373
[20]   MA J R, QIN J, SALSBURY T, et al Demand reduction in building energy systems based on economic model predictive control[J]. Chemical Engineering Science, 2012, 67 (1): 92- 100
doi: 10.1016/j.ces.2011.07.052
[21]   中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范: GB 50736‒2012 [S]. 北京: 中国建筑工业出版社, 2012: 6.
[22]   赵荣义, 范存养, 薛殿华, 等. 空气调节(第四版) [M]. 北京: 中国建筑工业出版社, 2009: 7.
[23]   ZHAO H, MAGOULÈS F A review on the prediction of building energy consumption[J]. Renewable and Sustainable Energy Reviews, 2012, 16 (6): 3586- 3592
doi: 10.1016/j.rser.2012.02.049
[24]   邓剑波, 马瑞, 胡振文, 等 基于改进粒子群算法的冷热电联供微网优化调度[J]. 电力科学与技术学报, 2018, 33 (2): 35- 42
DENG Jian-bo, MA Rui, HU Zhen-wen, et al Optimal scheduling of micro grid with CCHP systems based on improved particle swarm optimization algorithm[J]. Journal of Electric Power Science and Technology, 2018, 33 (2): 35- 42
[25]   邓佳乐, 胡林献, 邵世圻, 等 电热联合系统多时间尺度滚动调度策略[J]. 电网技术, 2016, 40 (12): 3796- 3803
DENG Jia-le, HU Lin-xian, SHAO Shi-qi, et al Multi-time scale rolling scheduling method for combined heat and power system[J]. Power System Technology, 2016, 40 (12): 3796- 3803
[26]   周晓君, 阳春华, 桂卫华, 等 带可变随机函数和变异算子的粒子群优化算法(英文)[J]. 自动化学报, 2014, 40 (7): 1339- 1347
ZHOU Xiao-jun, YANG Chun-hua, GUI Wei-hua, et al A particle swarm optimization algorithm with variable random functions and mutation[J]. Acta Automatica Sinica, 2014, 40 (7): 1339- 1347
doi: 10.1016/S1874-1029(14)60015-X
[1] Jia-tao DING,Jie HE,Lin-zhi LI,Xiao-hui XIAO. Real-time walking pattern optimization for humanoid robot based on model predictive control[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1843-1851.
[2] CHU Liang, LI Tian-jiao, SUN Cheng-wei. Research on adaptive cruise control strategy for electric vehicle based on optimization of regenerative braking[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1596-1602.
[3] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 750-758.
[4] WANG Qing, WEN Li-qing, LI Jiang-xiong, KE Ying-lin, LI Tao, ZHANG Shi-jiong. Modeling and optimization for aircraft final assembly line based on Petri net[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1224-1231.