Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (3): 443-450    DOI: 10.3785/j.issn.1008-973X.2025.03.001
    
Vehicle multimodal trajectory prediction model based on spatio-temporal graph attention network
Wenqiang CHEN(),Dongdan WANG,Wenying ZHU*(),Yongjie WANG,Tao WANG
School of Transportation Engineering, Chang’an University, Xi’an 710064, China
Download: HTML     PDF(1204KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A spatio-temporal graph attention network for vehicle multimodal trajectory prediction (STGAMT) was proposed to address the challenges of predicting manually-driven vehicle trajectories and investigating their impact on autonomous driving decisions. The temporal and spatial characteristics were modeled based on the historical information about the vehicle. A two-dimensional convolutional neural network was employed to identify transverse and longitudinal lane change states, which were then combined with the output from the spatio-temporal dynamic interaction module to form transverse and longitudinal motion characteristics. The Softmax function was used to determine the vehicle’s driving intention. The multi-mode trajectory output was achieved by using a GRU network based on Gaussian conditional distribution. Experimental results showed that, in short-term predictions, the STGAMT model reduced the average error by 63.8% and 41.0% compared to the other five classic models on HighD and NGSIM datasets, respectively. In long-term predictions, the STGAMT model reduced the RMSE by 62.5% and 19.1% compared to the average RMSE of the other five classic models on HighD and NGSIM datasets, respectively. Results indicated that the STGAMT model could effectively improve the accuracy of manually-driven vehicle trajectory prediction.



Key wordsautonomous driving      vehicle trajectory prediction      driving intention recognition      multimodality trajectory      graph attention network     
Received: 03 January 2024      Published: 10 March 2025
CLC:  U 491  
  TP 393  
Fund:  国家重点研发计划资助项目(2021YFE0203600);陕西省自然科学基金资助项目(2022JM-426);陕西省交通运输厅科技项目(23-33K);长安大学中央高校基本科研业务费专项资金资助项目(300102344203).
Corresponding Authors: Wenying ZHU     E-mail: cwq@chd.edu.cn;zwying@chd.edu.cn
Cite this article:

Wenqiang CHEN,Dongdan WANG,Wenying ZHU,Yongjie WANG,Tao WANG. Vehicle multimodal trajectory prediction model based on spatio-temporal graph attention network. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 443-450.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.03.001     OR     https://www.zjujournals.com/eng/Y2025/V59/I3/443


基于时空图注意力网络的车辆多模态轨迹预测模型

针对人工驾驶车辆轨迹的预测难题及对自动驾驶决策的影响,建立基于时空图注意力网络的车辆多模态轨迹预测模型(STGAMT). 模型基于车辆的历史信息,对车辆时间和空间维度的特征进行建模. 利用二维卷积神经网络识别车辆的横纵向的变道状态信息,将横纵向变道状态信息分别与时空动态交互模块输出信息桥连为横纵向运动特征,采用Softmax函数识别车辆的驾驶意图. 利用基于高斯条件分布的GRU网络对轨迹进行多模态轨迹输出. 实验结果表明,在短期预测范围内,STGAMT模型在HighD和NGSIM数据集上的RMSE较其他5个经典模型的平均RMSE降低了63.8%和41.0%;在长期预测范围内,STGAMT模型在HighD和NGSIM数据集上的RMSE较其他5个经典模型的平均RMSE降低了62.5%和19.1%. STGAMT模型可以有效提高人工驾驶车辆轨迹预测精度.


关键词: 自动驾驶,  车辆轨迹预测,  驾驶意图识别,  多模态轨迹,  图注意力网络 
Fig.1 Calculation diagram of vehicle relative motion state
Fig.2 Diagram of STGAMT model structure
Fig.3 Trajectories affected by historical time
Fig.4 Diagram of graph attention network
Fig.5 Lane change trajectory of vehicle
Fig.6 Structure of intention feature extraction operation
数据集RMSE
tf/sS-LSTM[16]CS-LSTM[15]S-GAN[14]PIP[18]STDAN[17]STGAMT(w/o IFE)STGAMT
HighD10.220.220.200.170.190.070.07
20.620.610.570.520.270.190.19
31.271.241.141.050.480.350.32
42.152.101.901.760.910.650.61
53.143.272.912.631.661.201.14
NGSIM10.650.610.570.550.420.220.21
21.311.271.321.181.010.800.78
32.162.092.221.941.691.521.49
43.253.103.262.882.562.472.40
54.554.374.404.043.673.693.58
Tab.1 RMSE for different models in 5-second forecast range
模型名称te/s
S-LSTM[16]0.0157
CS-LSTM[15]0.0174
S-GAN[14]0.0283
PIP[18]0.0185
STDAN[17]0.0214
STGAMT(w/o IFE)0.0137
STGAMT0.0139
Tab.2 Comparison of training time per epoch for models
数据集tf/sRMSE(lat)RMSE(lon)
STGAMT
(w/o IFE)
STGAMTSTGAMT
(w/o IFE)
STGAMT
HighD10.030.030.070.07
20.120.110.140.14
30.250.230.240.22
40.370.360.530.48
50.490.471.091.04
NGSIM10.080.080.200.20
20.200.200.770.75
30.300.291.491.46
40.390.372.432.37
50.490.403.663.54
Tab.3 RMSE comparison of ablation experiment
Fig.7 Prediction trajectory and attention distribution map of target vehicle
[1]   ISLAM M M, NEWAZ A A, SONG L, et al Connected autonomous vehicles: state of practice[J]. Applied Stochastic Models in Business and Industry, 2023, 39 (5): 684- 700
doi: 10.1002/asmb.2772
[2]   HUANG Y J, DU J T, YANG Z R, et al A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7 (3): 652- 674
doi: 10.1109/TIV.2022.3167103
[3]   BENRACHOU D E, GLASER S, ELHENAWY M, et al Use of social interaction and intention to improve motion prediction within automated vehicle framework: a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (12): 22807- 22837
doi: 10.1109/TITS.2022.3207347
[4]   李文礼, 韩迪, 石晓辉, 等. 基于时-空注意力机制的车辆轨迹预测[J]. 中国公路学报, 2023, 36: 226–239.
LI Wenli, HAN Di, SHI Xiaohui, et al, Vehicle trajectory prediction based on spatial-temporal attention mechanism[J]. China Journal of Highway and Transport , 2023, 36: 226–239.
[5]   ZHANG K P, LI L Explainable multimodal trajectory prediction using attention models[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103829
doi: 10.1016/j.trc.2022.103829
[6]   DING Z, ZHAO H Incorporating driving knowledge in deep learning based vehicle trajectory prediction: a survey[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8 (8): 3996- 4015
doi: 10.1109/TIV.2023.3266446
[7]   HOUENOU A, BONNIFAIT P, CHERFAOUI V, et al. Vehicle trajectory prediction based on motion model and maneuver recognition [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Tokyo: IEEE, 2013: 4363–4369.
[8]   BARTH A, FRANKE U. Where will the oncoming vehicle be the next second? [C]// 2008 IEEE Intelligent Vehicles Symposium . Eindhoven: IEEE, 2008: 510–515.
[9]   JIANG Y, ZHU B, YANG S, et al Vehicle trajectory prediction considering driver uncertainty and vehicle dynamics based on dynamic bayesian network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53 (2): 689- 703
doi: 10.1109/TSMC.2022.3186639
[10]   HUANG M, ZHU M, XIAO Y, et al Bayonet-corpus: a trajectory prediction method based on bayonet context and bidirectional GRU[J]. Digital Communications and Networks, 2021, 7 (1): 72- 81
doi: 10.1016/j.dcan.2020.03.002
[11]   ALTCHé F, DE LA FORTELLE A, IEEE. An LSTM network for highway trajectory prediction [C]// IEEE International Conference on Intelligent Transportation Systems . New York: IEEE, 2017: 253–259.
[12]   LI X, YING X W, CHUAH M C, et al. GRIP: graph-based interaction-aware trajectory prediction [C]// IEEE Intelligent Transportation Systems Conference . Auckland: IEEE, 2019: 3960–3966.
[13]   MO X U, YANG X, CHEN L. Graph and recurrent neural network-based vehicle trajectory prediction for highway driving [C]// IEEE International Intelligent Transportation Systems Conference . Indianapolis: IEEE, 2021: 1934–1939.
[14]   GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 2255–2264.
[15]   DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops . New York: IEEE, 2018: 1468–1476.
[16]   ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces [C]// IEEE Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2016: 961–971.
[17]   CHEN X, ZHANG H, ZHAO F, et al Intention-aware vehicle trajectory prediction based on spatial-temporal dynamic attention network for internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 19471- 19483
doi: 10.1109/TITS.2022.3170551
[18]   SONG H, DING W C, CHEN Y X, et al. PiP: planning-informed trajectory prediction for autonomous driving [C]// Computer Vision - ECCV 2020 16th European Conference Proceedings Lecture Notes in Computer Science . Glasgow: LNCS, 2020: 598–614.
[1] Qing SHU,Xiping LIU,Zhao TAN,Xi LI,Changxuan WAN,Dexi LIU,Guoqiong LIAO. SQL generation method based on dependency relational graphattention network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 908-917.
[2] Feng-long SU,Ning JING. Temporal knowledge graph representation learning based on relational aggregation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 235-242.
[3] Cheng CHEN,Hao ZHANG,Yong-qiang LI,Yuan-jing FENG. Knowledge graph link prediction based on relational generative graph attention network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1025-1034.