Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (5): 1092-1102    DOI: 10.3785/j.issn.1008-973X.2025.05.022
    
Safety evaluation of special-purpose vehicle crossing small and medium span bridge under unclosed traffic condition
Junfeng WANG1(),Bo LIU2,Sujing YUAN3,4,Tao WANG3,4,*(),Wanshui HAN3,4
1. College of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. Jiangxi Provincial Communications Investment Group Limited Company, Nanchang 330108, China
3. Shaanxi Provincial Key Laboratory of Highway Bridge and Tunnel, Xi’an 710064, China
4. Highway College, Chang’an University, Xi’an 710064, China
Download: HTML     PDF(1431KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An evaluation system for special-purpose vehicles (SPV) passage on highway bridges was improved in order to address the commonly overlooked scenario of parallel traffic flow between SPV and regular vehicles during bridge load assessments. The response analysis and multi-level safety evaluation of SPV crossing bridge under unclosed traffic conditions were conducted. Statistical analysis was conducted on the load data of SPV (including weight and dimension information) from a specific province, leading to the identification of representative vehicle types. The composition of bridge loads for SPVs during non-closure traffic was determined, and a four-level safety assessment methodology was developed. The effects of parallel traffic by SPVs on bridge loads were analyzed by using 17 typical medium and small span bridges (bi-directional and four lane) as examples, and axle number limits for parallel traffic at different levels were proposed. The research findings show that SPVs can be classified into flatbed and concave types, further divided into five structural types and three calculation models based on axle spacing distribution and loading patterns. The effects of parallel traffic by SPVs gradually decrease as the safety assessment level decreases, allowing for an increased number of vehicles to travel in parallel while requiring enhanced safety measures. The maximum load effect on the main beam near the center of the bridge deck should receive particular attention during parallel traffic by SPVs. Only a limited number of low-quality oversized vehicles can travel in parallel on RC hollow slab bridges with spans less than 10 m, while PC beam bridges with a condition rating of class II or above can meet the majority of requirements for parallel traffic by oversized vehicles.



Key wordsbridge engineering      special-purpose vehicle      open traffic      multi-level safety assessment      load effect      traffic proposal     
Received: 17 March 2024      Published: 25 April 2025
CLC:  U 44  
Fund:  陕西省交通运输厅科研资助项目(23-34K);陕西省自然科学基础研究计划一般项目-青年项目(2024JC-YBQN-0587);陕西省公路桥梁与隧道重点实验室(长安大学)开放基金资助项目(QLYSD2024K11).
Corresponding Authors: Tao WANG     E-mail: JunfengWang@xauat.edu.cn;wtbridge@chd.edu.cn
Cite this article:

Junfeng WANG,Bo LIU,Sujing YUAN,Tao WANG,Wanshui HAN. Safety evaluation of special-purpose vehicle crossing small and medium span bridge under unclosed traffic condition. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1092-1102.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.05.022     OR     https://www.zjujournals.com/eng/Y2025/V59/I5/1092


不封闭交通下大件车通行中小跨径桥梁安全评估

针对当前大件车通行验算时常忽略与社会车辆混合通行的情形,完善大件车通行公路桥梁评估体系,开展不封闭交通条件下大件车过桥响应分析及多层次安全评估. 针对某省超重大件车荷载数据(包括载重及尺寸信息)进行统计分析,提出大件车代表车型. 给出不封闭交通时大件车通行桥面荷载的组成形式,提出四层次安全评估方法. 以17座典型中小跨径桥梁(双向四车道)为例,对大件车混合通行桥梁荷载效应进行分析,提出不同层次下可混合通行大件车的轴数限值. 研究发现,大件车可以划分为平板式与凹梁式2种类型,根据轴距分布及加载模式,可以进一步划分为5种结构车型、3种计算车型. 随着安全评估层次的降低,大件车混行荷载效应逐渐降低,满足混合通行条件的大件车数量增多,安全保障措施要求逐渐提高. 大件车混合通行时桥面中心附近的主梁荷载效应最大,应予以重点关注. 仅有较少车货总重较低的大件车可以混合通行跨径小于10 m的RC空心板桥,桥梁技术状况等级为2类以上的PC梁桥可以满足绝大多数大件车混合通行的要求.


关键词: 桥梁工程,  大件车运输车辆,  不封闭交通,  多层次安全评估,  荷载效应,  通行建议 
Fig.1 Total redistribution of truck and cargo
Fig.2 Annual traffic volume of SPV with different axe
Fig.3 Distribution of total size of SPVs and goods
Fig.4 Distribution of transverse and longitudinal wheel spacing
Fig.5 Wheelbase distribution of SPVs
类别图示轴距分布/m
平板Ⅰ型
平板Ⅱ型
平板Ⅲ型
凹梁Ⅰ型
凹梁Ⅱ型
Tab.1 Represent model of SPV
车型分类代表车型牵引车轴数挂车轴数挂车横向轮胎数d1/md2/md3/md4/md5/mVprop/%
RV-1平板Ⅰ型、凹梁Ⅰ型32×(3~8)牵引车: 2×4
拖挂车: 2×8
3.251.453.108.251.300.19
RV-2平板Ⅱ型33~193.251.453.101.251.78
RV-3平板Ⅲ型、凹梁Ⅱ型33~193.251.458.131.2598.0
Tab.2 Calculation model of representative SPVs
Fig.6 Composition of bridge deck load with SPVs (four-lane divided highway)
桥梁技术
状况等级
Z1
(抗弯构件)
ξeξcξsZ1'
1类1.150~0.061.000.98~1.001.13~1.15
2类1.100.02~0.080.980.95~0.981.00~1.04
3类1.000.05~0.120.930.90~0.950.80~0.88
Tab.3 Reduction coefficient of bridge bearing capacity
桥梁类型代号跨径组成/m截面抗力/(kN·m)
跨中支点
钢筋混凝土简支空心板RCS-61×6312.0
RCS-81×8420.3
预应力混凝土简支空心板RCS-101×10615.6
PCS-101×101 118.4
PCS-131×131 632.8
PCS-161×162 229.0
PCS-201×203 333.5
预应力混凝土简支T梁PCT-201×205 734.0
PCT-251×258 912.6
PCT-301×309 924.3
PCT-351×3513 695.4
PCT-401×4023 897.6
预应力混凝土连续小箱梁PCB-204×206 345.47 073.5
PCB-254×258 463.48 527.3
PCB-304×3011 160.510 547.4
PCB-354×3514 550.313 326.9
PCB-404×4018 975.116 433.0
Tab.4 Basic information of typical small and medium span bridge
Fig.7 Cross section layout of typical small and medium span bridge
Fig.8 Load effect distribution of RCS-10 under mixed driving condition of SPVs
Fig.9 Load effect distribution of PCS-20 under mixed driving condition of SPVs
Fig.10 Load effect distribution of PCT-40 under mixed driving condition of SPVs
Fig.11 Load effect distribution of PCB-40 under mixed driving condition of SPVs
Fig.12 Extreme value of bridge response
桥型第1阶段第2阶段
1类桥2类桥3类桥
RCS-60-0-0-5-1-10-3-1-1-1-10-0-0-1-1-1NONE
RCS-80-0-0-4-1-10-0-0-4-1-10-0-0-0-3-4NONE
RCS-100-0-0-4-6-10-0-0-4-6-10-0-0-0-0-3NONE
PCS-100-0-0-5-1-1ALLALL0-0-3-1-1-1
PCS-130-0-0-4-7-1ALL5-1-1-1-1-10-0-0-0-0-4
PCS-160-0-0-4-6-7ALL0-5-6-1-1-1NONE
PCS-200-0-0-4-5-77-1-1-1-1-10-4-5-6-1-1NONE
PCT-206-7-1-1-1-1ALLALL0-4-5-7-1-1
PCT-256-1-1-1-1-1ALLALL6-1-1-1-1-1
PCT-303-1-1-1-1-1ALL0-4-6-7-1-1NONE
PCT-353-7-1-1-1-1ALL0-6-7-7-7-1NONE
PCT-400-7-7-1-1-1ALLALL4-1-1-1-1-1
PCB-200-4-5-6-1-1ALLALLALL
PCB-250-4-5-5-6-1ALLALLALL
PCB-300-3-3-4-5-5ALLALLALL
PCB-350-0-0-3-4-5ALLALLALL
PCB-400-0-0-0-4-4ALLALLALL
Tab.5 Maximum number of trailer axle allowed in parallel for RV-1 model
桥型第1阶段第2阶段
1类桥2类桥3类桥
RCS-60-0-0-5-1-10-3-1-1-1-10-0-0-1-1-1NONE
RCS-10-0-0-4-1-10-0-0-4-1-10-0-0-0-3-4NONE
RCS-100-0-0-4-6-10-0-0-4-6-10-0-0-0-0-3NONE
PCS-100-0-0-5-1-1ALLALL0-0-3-1-1-1
PCS-130-0-0-4-7-1ALL5-1-1-1-1-10-0-0-0-0-3
PCS-160-0-0-3-6-71-1-1-1-1-10-4-5-1-1-1NONE
PCS-200-0-0-3-5-66-9-12-1-1-10-3-4-6-1-10NONE
PCT-205-7-9-14-1-1ALLALL0-4-5-7-1-9
PCT-255-1-9-9-9-10ALLALL5-7-9-9-9-10
PCT-304-7-1-9-9-109-11-12-12-13-130-5-6-7-7-1NONE
PCT-355-7-1-1-1-110-11-12-12-13-133-6-7-7-7-1NONE
PCT-405-7-1-1-1-9ALLALL6-1-1-9-9-10
PCB-200-3-4-4-6-7ALLALLALL
PCB-250-3-4-4-5-6ALLALL10-14-1-1-1-1
PCB-300-3-4-4-5-5ALLALL13-17-1-1-1-1
PCB-350-3-3-4-4-5ALLALL12-15-16-17-1-1
PCB-400-3-3-3-4-5ALLALL16-1-1-1-1-1
Tab.6 Maximum number of trailer axle allowed in parallel for RV-2 model
桥型第1阶段第2阶段
1类桥2类桥3类桥
RCS-60-0-0-4-1-10-3-1-1-1-10-0-0-1-1-1NONE
RCS-10-0-0-4-1-10-0-0-4-1-10-0-0-0-3-4NONE
RCS-100-0-0-4-6-10-0-0-4-6-10-0-0-0-0-3NONE
PCS-100-0-0-5-1-1ALLALL0-0-3-1-1-1
PCS-130-0-3-4-7-1ALL5-1-1-1-1-10-0-0-0-3-4
PCS-160-0-3-4-6-71-1-1-1-1-13-5-6-1-1-1NONE
PCS-200-0-3-4-5-77-10-12-1-1-10-4-5-6-1-10NONE
PCT-206-7-9-14-1-1ALLALL3-4-5-7-1-9
PCT-256-1-9-10-10-10ALLALL6-1-9-9-10-10
PCT-305-1-9-9-10-109-12-12-12-13-140-6-7-1-1-1NONE
PCT-355-1-1-1-9-911-12-13-13-13-144-7-1-1-1-1NONE
PCT-405-1-1-9-9-10ALLALL6-9-9-9-10-10
PCB-200-4-5-5-7-1ALLALLALL
PCB-250-4-5-5-6-7ALLALL11-15-1-1-1-1
PCB-300-3-4-4-5-6ALLALL14-18-1-1-1-1
PCB-350-3-4-4-5-6ALLALL13-16-17-18-1-1
PCB-400-3-4-4-5-5ALLALL17-1-1-1-1-1
Tab.7 Maximum number of trailer axle allowed in parallel for RV-3 model
[1]   贺宜, 余荣杰 大件货物道路运输技术现状与展望[J]. 前瞻科技, 2023, 2 (3): 106- 117
HE Yi, YU Rongjie Current state and prospect of road transportation technology for oversized freights[J]. Science and Technology Foresight, 2023, 2 (3): 106- 117
[2]   徐康, 王涛, 刘博, 等 大件车作用下独柱墩弯桥倾覆风险快速预测[J]. 防灾减灾工程学报, 2023, 43 (3): 474- 483
XU Kang, WANG Tao, LIU Bo, et al Fast prediction of overturning risk of single-pilar pier curved girder bridge under the action of customized transport vehicle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43 (3): 474- 483
[3]   高文博, 袁阳光, 黄平明, 等 大件运输车载下考虑强度退化过程的钢绞线斜拉索安全评估[J]. 中国公路学报, 2020, 33 (8): 169- 181
GAO Wenbo, YUAN Yangguang, HUANG Pingming, et al Safety assessment of steel strand stay cable under customized transport vehicle load considering strength degradation[J]. China Journal of Highway and Transport., 2020, 33 (8): 169- 181
[4]   钟杰, 李本伟, 任德庆, 等 适用于普通公路大件设备运输的桥梁通过性评估体系研究[J]. 公路, 2021, 66 (8): 124- 130
ZHONG Jie, LI Benwei, REN Deqing, et al Study of bridge capacity assessment system for large-scale equipment transportation on highway[J]. Highway, 2021, 66 (8): 124- 130
[5]   FU G, MOSES F. Overload permit checking based on structural reliability [C]// Transportation Research Record, Bridge Engineering Conference . Denver: Transportation Research Board, 1991: 279-289.
[6]   LENNER R, SÝKORA M Partial factors for loads due to special vehicles on road bridges[J]. Engineering Structures, 2016, 106: 137- 146
doi: 10.1016/j.engstruct.2015.10.024
[7]   CORREIA J R, ARRUDA M R T, BRANCO F A Structural assessment of reinforced-concrete arch underpasses subjected to vehicular overloads[J]. Journal of Performance of Constructed Facilities, 2014, 28 (2): 321- 329
doi: 10.1061/(ASCE)CF.1943-5509.0000410
[8]   CHOI H H, LIM J K, SEO J W, et al An overweight permit analysis system for bridge management[J]. KSCE Journal of Civil Engineering, 2006, 10: 123- 129
doi: 10.1007/BF02823930
[9]   CASAS J R, APARICIO A C Computer-based bridge management system for permit vehicle routing[J]. Computer-Aided Civil and Infrastructure Engineering, 2001, 16: 444- 454
doi: 10.1111/0885-9507.00246
[10]   张龙龙. 常规桥梁大件运输控制荷载研究[D]. 重庆: 重庆交通大学, 2014.
ZHANG Longlong. Study on control load of large-scale transportation on conventional bridge [D]. Chongqing: Chongqing Jiaotong University, 2014.
[11]   李键, 钟明全, 吴海军, 等 桥梁技术状况对公路大件运输承载力的影响[J]. 公路, 2016, 61 (11): 84- 89
LI Jian, ZHONG Mingquan, WU Haijun, et al Impact of bridge technical state on bearing capacity of large-cargo transport[J]. Highway, 2016, 61 (11): 84- 89
[12]   李浩恒. 梁式桥大件运输过桥安全性评估及控制轴载研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LI Haoheng. Research on safety evaluation and control axle load of large transportation of beam [D]. Harbin: Harbin Institute of Technology, 2020.
[13]   李智斌. 中小跨径PC简支梁桥大件运输荷载控制标准研究[D]. 重庆: 重庆交通大学, 2012.
LI Zhibin. Research on load control standards of large-scale transport on medium and small span PC simply supported girder bridge [D]. Chongqing: Chongqing Jiaotong University, 2012.
[14]   HAN W, YUAN Y, CHEN X, et al Safety assessment of continuous beam bridges under overloaded customized transport vehicle load[J]. Journal of Bridge Engineering, 2018, 23 (6): 04018030
doi: 10.1061/(ASCE)BE.1943-5592.0001222
[15]   袁阳光, 周广利, 高文博, 等 考虑安全性与正常使用性能的大件车辆过桥评估方法[J]. 工程力学, 2021, 38 (7): 147- 158
YUAN Yangguang, ZHOU Guangli, GAO Wenbo, et al Assessment method for bridges under customized trucks by incorporating safety and serviceability[J]. Engineering Mechanics, 2021, 38 (7): 147- 158
doi: 10.6052/j.issn.1000-4750.2020.07.0490
[16]   YUAN Y, HAN W, XU X, et al. Permit checking of overloaded customized transport vehicle based on serviceability limit state reliability of concrete bridges [J]. Advances in Structural Engineering , 2020(5): 136943322097245.
[17]   刘航, 侯玉兰, 莫迪, 等 16m空心板桥超重车混合行驶过桥安全评估[J]. 公路交通科技: 应用技术版, 2020, 16 (6): 304- 306
LIU Hang, HOU Yulan, MO Di, et al Safety assessment of 16 m hollow slab bridge with overweight vehicle mixed driving[J]. Highway Transportation Technology: Application Technology Version, 2020, 16 (6): 304- 306
[18]   公路桥涵养护规范: JTG 5120-2021 [S]. 北京: 人民交通出版社, 2021.
[19]   HUANG P, WANG J, HAN W, et al Study on impact factors of small- and medium-span bridges under the special-purpose vehicle load[J]. Structures, 2022, 43: 606- 620
doi: 10.1016/j.istruc.2022.06.077
[20]   公路大件运输安全通行评价技术规范: JTG/T 2213-2023 [S]. 北京: 人民交通出版社, 2023.
[21]   HUANG P, WANG J, XU X, et al Improved multi-lane traffic flow simulation based on weigh-in-motion data[J]. Measurement, 2022, 188: 110408
doi: 10.1016/j.measurement.2021.110408
[22]   王俊峰. 基于足尺构件破坏试验的混凝土桥梁疲劳寿命预测与裂缝分形研究[D]. 西安: 长安大学, 2022.
WANG Junfeng. Service state evaluation and fatigue life prediction of concrete girder bridges based on fractal characteristics of cracks and time-varying load and resistance model [D]. Xi’an: Chang’an University, 2022.
[23]   李扬海, 鲍卫刚, 郭修武, 等. 公路桥梁结构可靠度与概率极限状态设计 [M]. 北京: 人民交通出版社, 1997.
[24]   公路桥梁承载能力检测评定规程: JTG/T J21-2011 [S]. 北京: 人民交通出版社, 2011.
[25]   袁阳光, 黄平明, 韩万水, 等 基于可靠度理论的中小跨径桥梁卡车载重限值研究[J]. 工程力学, 2017, 34 (8): 161- 170
YUAN Yangguang, HUANG Pingming, HAN Wanshui, et al Reliability based research on truck-load limitation of medium-small-span bridges[J]. Engineering Mechanics, 2017, 34 (8): 161- 170
doi: 10.6052/j.issn.1000-4750.2016.04.0323
[26]   交通部专家委员会. 中华人民共和国交通行业 公路桥梁通用图[M]. 北京: 人民交通出版社, 2008.
[27]   黄平明, 袁阳光, 赵建峰, 等 重载交通下空心板桥梁承载能力安全性[J]. 交通运输工程学报, 2017, 17 (3): 1- 12
HUANG Pingming, YUAN Yangguang, ZHAO Jianfeng, et al Bearing capacity safety of hollow slab bridge under heavy traffic load[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (3): 1- 12
doi: 10.3969/j.issn.1671-1637.2017.03.001
[1] Yu ZHOU,Luyi GAN,Shengkui DI,Wenyu HE,Ningbo LI. Bridge model modification experiment based on strain influence line[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 537-546.
[2] Zhi-yuan MA,Jiang LIU,Yong-jian LIU,Yi LYU,Guo-jing ZHANG. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 909-919.
[3] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[4] Wei JI,Tian-yan SHAO. Optimization analysis of double launching noses during launching construction of multi-span continuous girder bridge[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1289-1298.
[5] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[6] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[7] LI Ming, LIU Yang, YANG Xing-sheng. Random vehicle flow load effect considering axle load[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 78-88.
[8] ZHAO Ren-da, JIA Yi, ZHAN Yu-lin, WANG Yong-bao, LIAO Ping, LI Fu-hai, PANG Li-guo. Seismic mitigation and isolation design for multi-span and long-unit continuous girder bridge inmeizoseismal area[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 886-895.
[9] XIAO Xin hui, LU Nai wei, LIU Yang. Fatigue reliability assessment for highway steel bridges under stochastic traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1777-1783.
[10] TU Zhi bin, HUANG Ming feng,LOU Wen juan. Extreme load effects on bridge towerbasement system due to joint actions of wind and wave[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 813-821.
[11] XIANG Yi-qiang,LIU Cheng-xi,TANG Guo-bin,CHEN Xue-jiang,WU Tian-zhen. Modified STM model for calculating inclined section strength of
reinforcement concrete cap beam of single column pier
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1248-1254.
[12] FU Li-Wen, HONG Jin-Feng, CHENG Wei-Beng, XIANG Hua-Wei. Causes and treatments of quadrate concrete piers crack[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1738-1745.