Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (3): 537-546    DOI: 10.3785/j.issn.1008-973X.2024.03.011
    
Bridge model modification experiment based on strain influence line
Yu ZHOU1,2,3(),Luyi GAN1,3,4,Shengkui DI2,Wenyu HE5,Ningbo LI1,3
1. College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
2. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
3. National-local Joint Engineering Laboratory of Building Health Monitoring and Disaster Prevention Technology, Anhui Jianzhu University, Hefei 230601, China
4. Operation and Monitoring Center for Hefei Urban Safety and Security, Hefei 230601, China
5. College of Civil Engineering, Hefei University of Technology, Hefei 230601, China
Download: HTML     PDF(1827KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The investigation on a three-span steel plate composite continuous girder bridge was conducted to obtain the strain time response under the moving load of a single heavy vehicle, in order to verify the effectiveness of strain influence line for model modification. An objective function was constructed by measured and calculated strain influence lines. The back propagation (BP) neural network was constructed to do self-training, by taking the micro-strain test value at the control point of the influence line form as the input layer parameter, and the structural geometry information and material characteristic value of finite element model as the output layer parameters. The parameters to be modified were predicted and the bridge model modification was carried out, on the basis of the self-trained BP neural network. Results showed that the proposed finite element model modification method can reduce the modelling error caused by the uncertainty of the real structure, the revised optimization model was closer to the real structure than the initial model, and the relative error of the objective function was reduced by 29%. The model parameter modification method based on BP neural network can be used to predict the parameters of the finite element model.



Key wordsbridge engineering      model modification      strain influence line      influence line identification      feedforward neural network     
Received: 06 January 2023      Published: 05 March 2024
CLC:  TU 317  
Fund:  国家自然科学基金资助项目 (51868045);安徽省高校省级自然科学研究资助项目 (2022AH050248);建筑健康监测与灾害预防国家地方联合工程实验室开放课题资助项目 (GG22KF002);安徽省高校优秀拔尖人才培育资助项目 (gxgnfx2022021);甘肃省建设科技资助项目 (JK2023-03);企业委托技术开发课题资助项目 (HYB20220240, HYB20230001).
Cite this article:

Yu ZHOU,Luyi GAN,Shengkui DI,Wenyu HE,Ningbo LI. Bridge model modification experiment based on strain influence line. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 537-546.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.03.011     OR     https://www.zjujournals.com/eng/Y2024/V58/I3/537


基于应变影响线的桥梁模型修正试验

为了验证桥梁应变影响线用于模型修正的有效性,针对某三跨钢板组合连续梁桥在单辆重车移动加载下的应变时程响应进行研究. 联合实测应变影响线和计算影响线构建目标函数;以影响线形态控制点处的微应变试验值作为输入层参数,以有限元模型结构几何尺寸信息与材料特征值作为输出层参数,构建反向传播 (BP)神经网络进行自我学习;基于训练完毕的BP神经网络,对待修参数进行预测,开展桥梁模型修正研究. 结果表明,所提出的有限元模型修正方法能够减小真实结构不确定性带来的建模误差,修正后的优化模型比初始模型更加贴近真实结构,目标函数相对误差降低29%;可以采用基于BP神经网络的模型参数修正方法对有限元模型参数进行预测.


关键词: 桥梁工程,  模型修正,  应变影响线,  影响线识别,  前馈神经网络 
Fig.1 Research route of model modification based on strain influence line
Fig.2 Simple supported beam model with rotational elastic constraint at both ends
Fig.3 Bridge structural model and section information
Fig.4 Monitoring points arrangment and site photo of strain influence line test of test bridge
Fig.5 Comparison of strain influence line of initial model with measured value
Fig.6 BP neural network topology
类别Ep/EqT1p/T1qT2p/T2qTwp/Twq
初始值1.001.001.001.00
样本11.051.101.051.10
样本21.051.101.201.15
样本31.051.201.201.30
样本41.051.251.251.25
样本51.051.301.201.15
样本61.101.001.001.00
样本71.101.051.051.05
样本81.101.201.151.25
样本91.101.201.201.30
样本101.101.301.301.15
样本111.151.201.101.20
样本121.151.201.251.30
样本131.151.251.151.15
样本141.151.251.201.20
样本151.151.251.201.30
样本161.201.151.151.20
样本171.201.251.151.25
样本181.201.251.201.30
样本191.201.301.251.30
样本201.201.301.301.30
样本211.251.151.251.35
样本221.251.201.201.25
样本231.251.201.251.30
样本241.251.301.301.25
样本251.251.351.351.30
样本261.291.151.251.20
样本271.291.201.301.25
样本281.291.251.251.30
样本291.291.301.351.20
样本301.291.351.351.30
Tab.1 Neural network sample parameter table
Fig.7 Optimal iteration and error analysis
类别E /MPaT1 /mmT2 /mmTw /mm
初始值206 00030.0040.0016.00
修正值290 24828.2536.4120.39
Tab.2 Parameter values before and after model modification
误差类别eaeperR
修正前3.3416.4938.000.996 69
修正后0.830.899.430.996 71
Tab.3 Comparison of strain influence line error before and after model modification
Fig.8 Comparison of strain influence line of modified model with measured value
Fig.9 Comparison of relative errors of strain influence lines before and after model modification
Fig.10 Comparison of structural self-oscillation frequency before and after model modification
[1]   ZHOU L, WANG L, CHEN L, et al Structural finite element model updating by using response surfaces and radial basis functions[J]. Advances in Structural Engineering, 2016, 19 (9): 1446- 1462
doi: 10.1177/1369433216643876
[2]   周宇, 狄生奎, 项长生, 等 基于弹性约束支承梁转角影响线的梁结构损伤诊断[J]. 浙江大学学报: 工学版, 2020, 54 (5): 879- 888
ZHOU Yu, DI Shengkui, XIANG Changsheng, et al Beam structure damage detection based on rotational-angle-influence-lines of elastic-constrained-support beam[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (5): 879- 888
[3]   邓苗毅, 任伟新 基于响应面方法的结构有限元模型修正研究进展[J]. 铁道科学与工程学报, 2008, 5 (3): 42- 45
DENG Miaoyi, REN Weixin Study on structure finite element modelupdating based on response surface methodology[J]. Journal of Railway Science and Engineering, 2008, 5 (3): 42- 45
[4]   宗周红, 牛杰, 王浩 基于模型确认的结构概率损伤识别方法研究进展[J]. 土木工程学报, 2012, 45 (8): 121- 130
ZONG Zhouhong, NIU Jie, WANG Hao A review of structural damage identification methods based on the finiteelement model validation[J]. Journal of Civil Engineering, 2012, 45 (8): 121- 130
[5]   马印平, 刘永健, 刘江 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32 (11): 51- 61
MA Yinping, LIU Yongjian, LIU Jiang Multi-scale finite element model updating of CFST composite truss bridge based on response surface method[J]. China Journal of Highway and Transport, 2019, 32 (11): 51- 61
doi: 10.19721/j.cnki.1001-7372.2019.11.004
[6]   郁胜, 周林仁, 欧进萍 基于径向基函数响应面方法的超大跨悬索桥有限元模型修正[J]. 铁道科学与工程学报, 2014, 11 (1): 1- 9
YU Sheng, ZHOU Linren, OU Jinping Finite element model updating of large suspension bridge based on radial basis function response surface[J]. Journal of Railway Science and Engineering, 2014, 11 (1): 1- 9
[7]   LIU Y, XU D J, LI Y, et al Fuzzy cross-model cross-mode method and its application to update the finite element model of structures[J]. Journal of Physics: Conference Series, 2011, 305 (1): 012102
[8]   王晓光, 党李涛, 马明 基于振动频率的响应面模型修正稳健估计法[J]. 公路交通科技, 2022, 39 (2): 77- 84
WANG Xiaoguang, DANG Litao, MA Ming A robust estimation method for response surface model Updating based on vibration frequency[J]. Journal of Highwayand Transportation Research and Development, 2022, 39 (2): 77- 84
[9]   周宇. 基于影响线与柔度矩阵的桥梁损伤信息融合诊断研究[D]. 兰州: 兰州理工大学, 2018.
ZHOU Yu. Research of bridge damage diagnosis based on information fusion with influence line and flexibility matrix[D]. Lanzhou: Lanzhou University of Technology, 2018.
[10]   周宇, 狄生奎, 李喜梅, 等 基于弹性约束梁应变影响线曲率的桥梁结构损伤识别[J]. 应用基础与工程科学学报, 2021, 29 (4): 901- 914
ZHOU Yu, DI Shengkui, LI Ximei, et al Damage identification of bridge structural based on strain influence line curvature of elastic restrained beam[J]. Journal of Basic Science and Engineering, 2021, 29 (4): 901- 914
[11]   翁顺, 朱宏平 基于有限元模型修正的土木结构损伤识别方法[J]. 工程力学, 2021, 38 (3): 1- 16
WENG Shun, ZHU Hongping Damage identification of civil structures based on finite element model updating[J]. Engineering Mechanics, 2021, 38 (3): 1- 16
[12]   ZHENG X, YI T H, ZHONG J W, et al Rapid evaluation of load-carrying capacity of long-span bridges using limited testing vehicles[J]. Journal of Bridge Engineering, 2022, 27 (4): 04022008
doi: 10.1061/(ASCE)BE.1943-5592.0001838
[13]   ZHOU Y, DI S K, XIANG C S, et al Damage identification of simply supported bridge based on rotational angle influence lines method[J]. Transactions of Tianjin University, 2018, 24 (6): 587- 601
doi: 10.1007/s12209-018-0135-9
[14]   CHEN Z W, CAI Q L, ZHU S Y Damage quantification of beam structures using deflection influence lines[J]. Structural Control and Health Monitoring, 2018, 25 (11): e2242
doi: 10.1002/stc.2242
[15]   HE W Y, REN W X Structural damage detection using a parked vehicle induced frequency variation[J]. Engineering Structures, 2018, 170: 34- 41
doi: 10.1016/j.engstruct.2018.05.082
[16]   朱安文, 曲广吉, 高耀南, 等 结构动力模型修正技术的发展[J]. 力学进展, 2002, 32 (3): 337- 348
ZHU Anwen, QU Guangji, GAO Yaonan, et al A study of themodifying techniques of structure dynamic models[J]. Advances of Mechanics, 2002, 32 (3): 337- 348
[17]   康志锐, 张巍, 宋帅, 等 基于响应面的波形钢腹板PC组合梁桥有限元模型修正方法的试验研究[J]. 铁道科学与工程学报, 2020, 17 (5): 1186- 1192
KANG Zhirui, ZHANG Wei, SONG Shuai, et al Experimental research on FE model updating of PC composite box girder bridge with corrugated steel websbased on response surface method[J]. Journal of Railway Science and Engineering, 2020, 17 (5): 1186- 1192
[18]   肖祥, 鄢宇, 何佳, 等 大跨度斜拉桥多尺度有限元模型及其修正[J]. 华中科技大学学报: 自然科学版, 2017, 45 (6): 120- 127
XIAO Xiang, YAN Yu, HE Jia, et al Multi-scale finite element modeling and model updating of long span cable-stayed bridge[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45 (6): 120- 127
[19]   方志, 唐盛华, 张国刚, 等 基于多状态下静动态测试数据的斜拉桥模型修正[J]. 中国公路学报, 2011, 24 (1): 34- 41
FANG Zhi, TANG Shenghua, ZHANG Guogang, et al Cable-stayed bridge model updating based on static and dynamic test data of multi-state[J]. China Journal of Highway and Transport, 2011, 24 (1): 34- 41
doi: 10.19721/j.cnki.1001-7372.2011.01.006
[20]   张皓, 李东升, 李宏男 有限元模型修正研究进展: 从线性到非线性[J]. 力学进展, 2019, 49 (1): 542- 575
ZHANG Hao, LI Dongsheng, LI Hongnan Recent progress on finite element model updating: from linearity to nonlinearity[J]. Advances in Mechanics, 2019, 49 (1): 542- 575
[21]   李宏男, 高东伟, 伊廷华 土木工程结构健康监测系统的研究状况与进展[J]. 力学进展, 2008, 38 (2): 151- 166
LI Hongnan, GAO Dongwei, YI Tinghua Research status and progress of structural health monitoring system in civil engineering[J]. Advances in Mechanics, 2008, 38 (2): 151- 166
doi: 10.6052/1000-0992-2008-2-J2007-016
[22]   王佐才, 丁雅杰, 戈壁, 等 桥梁结构非线性模型修正研究综述[J]. 交通运输工程学报, 2022, 22 (2): 59- 75
WANG Zuocai, DING Yajie, GE Bi, et al Review on nonlinear model updating for bridge structures[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (2): 59- 75
[23]   费庆国, 李爱群, 张令弥 基于神经网络的非线性结构有限元模型修正研究[J]. 宇航学报, 2005, 26 (3): 267- 269
FEI Qingguo, LI Aiqun, ZHANG Lingmi Study on finite elementmodel updating of nonlinear structures using neural network[J]. Journal of Astronautics, 2005, 26 (3): 267- 269
doi: 10.3321/j.issn:1000-1328.2005.03.005
[24]   杜德润, 李爱群, 杨玉冬, 等 基于神经网络修正的结构有限元模型简化[J]. 东南大学学报: 自然科学版, 2003, 35 (5): 635- 637
DU Derun, LI Aiqun, YANG Yudong, et al Structural FEA model simplification based on neural network’s modification[J]. Journal of Southeast University: Natural Science Edition, 2003, 35 (5): 635- 637
[25]   邢兵, 强士中, 唐堂 关于桥梁承载能力评定若干问题的思考[J]. 中外公路, 2015, 35 (6): 152- 155
XING Bing, QIANG Shizhong, TANG Tang Some thoughts on the assessment of bridge carrying capacity[J]. Journal of China and Foreign Highway, 2015, 35 (6): 152- 155
doi: 10.14048/j.issn.1671-2579.2015.06.034
[26]   陈志为, 杨维彪, 程棋锋, 等 基于正则化与B样条曲线的桥梁影响线识别方法[J]. 中国公路学报, 2019, 32 (3): 101- 108
CHEN Zhiwei, YANG Weibiao, CHENG Qifeng, et al Bridge influence line identification method based on regularization and B-spline curves[J]. China Journal of Highway and Transport, 2019, 32 (3): 101- 108
doi: 10.19721/j.cnki.1001-7372.2019.03.011
[27]   ZHENG X, YI T H, YANG D H, et al Stiffness estimation of girder bridges using influence lines identified from vehicle-induced structural responses[J]. Journal of Engineering Mechanics, 2021, 147 (8): 04021042
doi: 10.1061/(ASCE)EM.1943-7889.0001942
[28]   ZHOU Y, DI S K, XIANG C S, et al Damage detection for simply supported bridge with bending fuzzy stiffness consideration[J]. Journal of Shanghai Jiaotong University: Science, 2018, 23 (2): 308- 319
doi: 10.1007/s12204-018-1939-4
[29]   王飞球, 黄健陵, 符竞, 等 基于BP神经网络的跨既有线高速铁路桥梁施工安全风险评估[J]. 铁道科学与工程学报, 2019, 16 (5): 1129- 1136
WANG Feiqiu, HUANG Jianling, FU Jing, et al Risk assessment of construction safety of high-speed railway bridge across existing lines based on BP neural network[J]. Journal of Railway Science and Engineering, 2019, 16 (5): 1129- 1136
doi: 10.19713/j.cnki.43-1423/u.2019.05.003
[30]   庞聪, 江勇, 吴涛, 等 神经网络参数对地震类型识别的影响[J]. 科学技术与工程, 2022, 22 (18): 7765- 7772
PANG Cong, JIANG Yong, WU Tao, et al Effect of neural network parameters on earthquake type recognition[J]. Science Technology and Engineering, 2022, 22 (18): 7765- 7772
[1] Yi-cun WANG,Chang-xiao SHAO,Tai JIN,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Representation of combustion thermochemical manifolds via multi-gate mixture of experts[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2401-2411.
[2] Zhi-yuan MA,Jiang LIU,Yong-jian LIU,Yi LYU,Guo-jing ZHANG. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 909-919.
[3] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[4] Wei JI,Tian-yan SHAO. Optimization analysis of double launching noses during launching construction of multi-span continuous girder bridge[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1289-1298.
[5] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[6] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[7] Jun WEI,Yong-xiao DU,Man-shu LIANG. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 899-909.
[8] LI Ming, LIU Yang, YANG Xing-sheng. Random vehicle flow load effect considering axle load[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 78-88.
[9] ZHAO Ren-da, JIA Yi, ZHAN Yu-lin, WANG Yong-bao, LIAO Ping, LI Fu-hai, PANG Li-guo. Seismic mitigation and isolation design for multi-span and long-unit continuous girder bridge inmeizoseismal area[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 886-895.
[10] ZHANG Xuan-wu, ZHENG Yao, YANG Bo-wei, ZHANG Ji-fa. Aerodynamic optimization design of airfoil configurations based on cascade feedforward neural network[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1405-1411.
[11] XIAO Xin hui, LU Nai wei, LIU Yang. Fatigue reliability assessment for highway steel bridges under stochastic traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1777-1783.
[12] XIANG Yi-qiang,LIU Cheng-xi,TANG Guo-bin,CHEN Xue-jiang,WU Tian-zhen. Modified STM model for calculating inclined section strength of
reinforcement concrete cap beam of single column pier
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1248-1254.
[13] FU Li-Wen, HONG Jin-Feng, CHENG Wei-Beng, XIANG Hua-Wei. Causes and treatments of quadrate concrete piers crack[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1738-1745.
[14] WANG Zhen-Hua, DONG Dan-Lin, TIAN Wei, YUAN Hang-Fei. Experimental research on a composite structure combined of
cable dome and single-layer lattice shell
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1608-1614.