|
|
Uncertainty quantification of structural dynamic characteristics based on sequential design and Gaussian process model |
Huaping WAN1,2( ),Zinan ZHANG1,3,Jiawei ZHOU2,3,Weixin REN4 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China 3. The Architectural Design and Research Institute of Zhejiang University, Hangzhou 310028, China 4. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China |
|
|
Abstract The Monte Carlo method, which is based on finite element models directly, is extremely time-consuming for quantifying the uncertainty of structural dynamic characteristics. To address the above issue, Gaussian process model was introduced to replace the time-intensive finite element model to enhance the computational efficiency of uncertainty quantification. A method for uncertainty quantification of structural dynamic characteristics was proposed based on sequential design and Gaussian process models. Optimal sample points were selected to establish an adaptive Gaussian process model through iterative sample enrichment criteria, thereby improving the accuracy of uncertainty quantification. The high-dimensional integration of statistical moments of dynamic characteristics was transformed into one-dimensional integration under the framework of the established adaptive Gaussian process model, allowing for analytical computation. Two mathematical functions were used to illustrate the fitting process of the adaptive Gaussian model, indicating a noticeable increase of the fitting accuracy with the increase of the number of iterations. Subsequently, the proposed method was applied to the calculation of the statistical moments of natural frequencies for a cylindrical shell, with computational accuracy comparable to that of the Monte Carlo method. The proposed method demonstrated significant advantage in computational accuracy and efficiency, in comparison with the traditional Gaussian process models.
|
Received: 07 September 2022
Published: 05 March 2024
|
|
Fund: 国家重点研发计划资助项目(2021YFF0501001);浙江省重点研发计划资助项目(2021C03154);国家自然科学基金资助项目(51878235). |
基于序贯设计和高斯过程模型的结构动力不确定性量化方法
将直接基于有限元模型的蒙特卡罗方法用于结构动力不确定性量化较耗时,为此采用高斯过程模型取代耗时的有限元模型,提高不确定性量化的计算效率. 提出基于序贯设计和高斯过程模型的结构动力不确定性量化方法,通过样本填充准则迭代,选择最优样本点建立自适应高斯过程模型,提升动力不确定性量化精度. 在建立的自适应高斯过程模型框架下,动力特性统计矩的高维积分转化为一维积分,进而进行解析计算. 采用2个数学函数来展示自适应高斯模型的拟合过程,高斯过程模型的拟合精度随着迭代次数增加而明显增加. 将所提方法应用于柱面网壳的固有频率统计矩计算,计算精度与蒙特卡罗法的结果相当. 与传统高斯过程模型对比,所提算法的计算效率优势明显,表明所提方法具有计算精度高和效率高的优势.
关键词:
结构动力特性,
不确定性量化,
序贯设计,
高斯过程模型,
统计矩
|
|
[1] |
MACE B R, WORDEN K, MANSON G Uncertainty in structural dynamics[J]. Journal of Sound and Vibration, 2005, 288 (3): 423- 429
doi: 10.1016/j.jsv.2005.07.014
|
|
|
[2] |
王泓晖, 房鑫, 李德江, 等 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报: 工学版, 2021, 55 (2): 280- 288 WANG Honghui, FANG Xin, LI Dejiang, et al Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 280- 288
|
|
|
[3] |
骆勇鹏, 刘景良, 韩建平, 等 自助法的改进及在结构参数不确定性量化和传递分析中的应用[J]. 振动工程学报, 2020, 33 (4): 679- 687 LUO Yongpeng, LIU Jingliang, HAN Jianping, et al The improvement of Bootstrap method and its application in structure parameter uncertainty quantification and propagation[J]. Journal of Vibration Engineering, 2020, 33 (4): 679- 687
doi: 10.16385/j.cnki.issn.1004-4523.2020.04.005
|
|
|
[4] |
SZÉKELY G S, SCHUËLLER G I Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191 (8−10): 799- 816
doi: 10.1016/S0045-7825(01)00290-0
|
|
|
[5] |
张雷, 张立华, 王家序, 等 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报: 工学版, 2019, 53 (4): 638- 644 ZHANG Lei, ZHANG Lihua, WANG Jiaxu, et al Analysis of stress and stiffness of flexspline based on response surface method[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 638- 644
|
|
|
[6] |
SAHA S K, MATSAGAR V, CHAKRABORTY S Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models[J]. Probabilistic Engineering Mechanics, 2016, 43: 20- 35
doi: 10.1016/j.probengmech.2015.10.008
|
|
|
[7] |
GUO L, LIU Y, ZHOU T Data-driven polynomial chaos expansions: a weighted least-square approximation[J]. Journal of Computational Physics, 2019, 381: 129- 145
doi: 10.1016/j.jcp.2018.12.020
|
|
|
[8] |
LU J, ZHAN Z, APLEY D W, et al Uncertainty propagation of frequency response functions using a multi-output Gaussian Process model[J]. Computers and Structures, 2019, 217: 1- 17
|
|
|
[9] |
万华平, 任伟新, 钟剑 桥梁结构固有频率不确定性量化的高斯过程模型方法[J]. 中国科学: 技术科学, 2016, 46 (9): 919- 925 WAN Huaping, REN Weixin, ZHONG Jian Gaussian process model-based approach for uncertainty quantification of natural frequencies of bridge[J]. Scientia Sinica: Technologica, 2016, 46 (9): 919- 925
doi: 10.1360/N092016-00191
|
|
|
[10] |
WAN H P, REN W X, TODD M D An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions[J]. International Journal for Numerical Methods in Engineering, 2017, 109 (5): 739- 760
doi: 10.1002/nme.5305
|
|
|
[11] |
LOCKWOOD B, MAVRIPLIS D Gradient-based methods for uncertainty quantification in hypersonic flows[J]. Computers and Fluids, 2013, 85: 27- 38
doi: 10.1016/j.compfluid.2012.09.003
|
|
|
[12] |
SANTNER T J, WILLIAMS B J, NOTZ W I, et al. The design and analysis of computer experiments [M]. New York: Springer, 2003, 145-200.
|
|
|
[13] |
LIN D K J, SIMPSON T W, CHEN W Sampling strategies for computer experiments: design and analysis[J]. International Journal of Reliability and Applications, 2001, 2 (3): 209- 240
|
|
|
[14] |
MCKAY M D, BECKMAN R J, CONOVER W J A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42 (1): 55- 61
doi: 10.1080/00401706.2000.10485979
|
|
|
[15] |
于晓辉, 钱凯, 吕大刚 基于随机 Pushdown 方法的钢筋混凝土框架结构抗连续倒塌能力概率评估[J]. 建筑结构学报, 2017, 38 (2): 83- 89 YU Xiaohui, QIAN Kai, LV Dagang Probabilistic assessment of structural resistance of RC frame structures against progressive collapse using random Pushdown analysis[J]. Journal of Building Structure, 2017, 38 (2): 83- 89
|
|
|
[16] |
WAN H P, REN W X Parameter selection in finite-element-model updating by global sensitivity analysis using Gaussian process meta-model[J]. Journal of Structural Engineering, 2015, 141 (6): 04014164
doi: 10.1061/(ASCE)ST.1943-541X.0001108
|
|
|
[17] |
KALAGNANAM J R, DIWEKAR U M An efficient sampling technique for off-line quality control[J]. Technometrics, 1997, 39 (3): 308- 319
doi: 10.1080/00401706.1997.10485122
|
|
|
[18] |
JIN R, CHEN W, SUDJIANTO A. On sequential sampling for global metamodeling in engineering design[C]// International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal: QC, 2002, 36223: 539-548.
|
|
|
[19] |
SACKS J, WELCH W J, MITCHELL T J, et al Design and analysis of computer experiments[J]. Statistical Science, 1989, 4 (4): 409- 423
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|