The research area was divided into spatiotemporal units, and a deep clustering network model that integrated feature extraction and clustering process was constructed based on the trajectory data of online car-hailing to extract relevant operation parameters to identify traffic states in order to accurately, real-time and efficiently grasp the traffic operation state of various areas in the road network. The clustering results were quantified to obtain category labels, and a traffic state identification model was proposed combining integrated learning, Bayesian optimization and light gradient boosting machine. The test results of Xi'an online car-hailing data show that road operation states can be divided into 5 types: smooth, slow, mild congestion, moderate congestion and severe congestion. The proportion of severely congested road sections increases significantly during morning and evening peak periods and decreases during off-peak periods. The proposed clustering model performs better than the comparison models, with the precision, recall, F1-score and accuracy of the traffic state identification model being 0.982 1, 0.984 4, 0.983 3 and 0.983 9 respectively.
Fig.5Collection area of ride-hailing trajectory data
订单编号
车辆编号
经度/(°)
纬度/(°)
时间戳
79b55f7533……e14c06bc
cc0bcb8012……f81a5827
108.94601
34.25298
153912798
79b55f7533……e14c06bc
cc0bcb8012……f81a5827
108.94602
34.25296
153912801
79b55f7533……e14c06bc
cc0bcb8012……f81a5827
108.94607
34.25293
153912804
79b55f7533……e14c06bc
cc0bcb8012……f81a5827
108.94608
34.25292
153912807
79b55f7533……e14c06bc
cc0bcb8012……f81a5827
108.94608
34.25293
153912811
Tab.1Sample data of online car-hailing trajectory
Fig.6Loss function of deep embedded clustering model
Fig.7Number of cluster for spatio-temporal unit
Fig.8Three-dimensional visualization of deep embedded clustering feature
模型
$ {S}_{{\mathrm{c}}} $
$ {C}_{{\mathrm{h}}} $
K-means
0.492 2
65 713.11
FCM
0.469 1
68 899.26
RF-K-means
0.684 5
92 241.37
AE-K-means
0.711 6
117 002.29
TS-DEC
0.886 3
204 168.57
Tab.2Evaluation of spatiotemporal unit clustering by different models
Fig.9Distribution characteristic of corresponding traffic state indicator
类别
等级
运行状态
A
4
中度拥堵
B
1
畅通
C
5
严重拥堵
D
3
轻度拥堵
E
2
缓行
Tab.3Quantified ranking result of traffic state
Fig.10Distribution characteristic of time proportion by every level road
Fig.11Global spatial distribution contour map of road traffic state
Fig.12Confusion matrix of every traffic state identification model
分类模型
P
R
$ {F}_{1-{\mathrm{score}}} $
$ {A}_{{\mathrm{cc}}} $
SVM
0.815 4
0.819 2
0.817 3
0.817 7
DT
0.868 5
0.883 2
0.873 8
0.874 9
XGBoost
0.908 3
0.919 6
0.913 6
0.915 4
所提模型
0.982 1
0.984 4
0.983 3
0.983 9
Tab.4Evaluation result of every traffic state identification model
[1]
张琦, 陈红, 周继彪, 等 道路开口对临近交叉口交通安全的影响[J]. 浙江大学学报: 工学版, 2021, 55 (4): 720- 726 ZHANG Qi, CHEN Hong, ZHOU Jibiao, et al Effect of roadway access on traffic safety at adjacent intersection[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (4): 720- 726
[2]
XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis [C]// International Conference on Machine Learning . New York: JMLR, 2016: 478-487.
[3]
黎茂盛, 李杭聪 基于交叉口车牌识别数据的网络交通状态分类方法[J]. 哈尔滨工业大学学报, 2023, 55 (11): 82- 90 LI Maosheng, LI Hangcong Classification method of network traffic state based on electronic police data at intersections[J]. Journal of Harbin Institute of Technology, 2023, 55 (11): 82- 90
[4]
李岩, 王泰州, 徐金华, 等 面向动态交通分配的交通需求深度学习预测方法[J]. 交通运输系统工程与信息, 2024, 24 (1): 115- 123 LI Yan, WANG Taizhou, XV Jinhua, et al Traffic demand prediction method based on deep learning for dynamic traffic assignment[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (1): 115- 123
[5]
JAVANI B, BABAZADEH A, CEDRER A Path-based capacity-restrained dynamic traffic assignment algorithm[J]. Transportmetrica B: Transport Dynamics, 2019, 7 (1): 741- 746
doi: 10.1080/21680566.2018.1496861
[6]
郭璘, 周继彪, 董升, 等 基于改进K-means算法的城市道路交通事故分析[J]. 中国公路学报, 2018, 31 (4): 270- 279 GUO Lin, ZHOU Jibiao, DONG Sheng, et al Analysis of urban road traffic accidents based on improved k-means algorithm[J]. China Journal of Highway and Transport, 2018, 31 (4): 270- 279
[7]
XU J H, LUO W B, LI Y, et al A multi-directional recurrent graph convolutional network model for reconstructing traffic spatiotemporal diagram[J]. Transportation Letters, 2024, 16 (5): 405- 415
doi: 10.1080/19427867.2023.2198829
[8]
苏俊杰, 柴干, 季文韬 基于投影寻踪的快速路交织区交通状态识别方法[J]. 交通信息与安全, 2019, 37 (2): 114- 119 SU Junjie, CHAI Gan, JI Wentao Traffic state discrimination method for interchange areas in expressways based on projection pursuit[J]. Journal of Transport Information and Safety, 2019, 37 (2): 114- 119
[9]
李晓璐, 于昕明, 杜崇, 等 基于权值优化的 FCM-MSVM 算法及其在高速公路状态识别中的应用[J]. 北京交通大学学报, 2018, 42 (4): 72- 78 LI Xiaolu, YU Xinming, DU Chong, et al FCM-MSVM algorithm based on weight optimization and its application in highway state discrimination[J]. Journal of Beijing Jiaotong University, 2018, 42 (4): 72- 78
[10]
LIU J, KHATTAK A J Delivering improved alerts, warnings, and control assistance using basic safety messages transmitted between connected vehicles[J]. Transportation Research Part C: Emerging Technologies, 2016, 68 (3): 83- 100
[11]
XU J H, LI Y R, LU W, et al A heterogeneous traffic spatio-temporal graph convolution model for traffic prediction[J]. Physica A: Statistical Mechanics and its Applications, 2024, 641: 129746
doi: 10.1016/j.physa.2024.129746
[12]
丁瑞, 刘俊, 蒋艳, 等 基于车辆加速度数据的互通立交匝道驾驶风险分析[J]. 交通信息与安全, 2021, 39 (1): 17- 25 DING Rui, LIU Jun, JIANG Yan, et al Driving risks of interchange ramps based on vehicle acceleration data[J]. Journal of Transport Information and Safety, 2021, 39 (1): 17- 25
[13]
张鑫, 张卫华 快速路合流区主线不同交通状态下的安全性分析[J]. 吉林大学学报: 工学版, 2022, 52 (6): 1308- 1314 ZHANG Xin, ZHANG Weihua Safety analysis of main line under different traffic conditions in expressway confluence area[J]. Journal of Jilin University: Engineering and Technology Edition, 2022, 52 (6): 1308- 1314
[14]
ZENG Q, GUO Q, WONG S C, et al Jointly modeling area-level crash rates by severity: a Bayesian multivariate random-parameters spatio-temporal Tobit regression[J]. Transportmetrica A: Transport Science, 2019, 15 (2): 1867- 1884
doi: 10.1080/23249935.2019.1652867
[15]
李岩, 曾明哲, 朱才华, 等 基于多点线圈联合数据的高速公路匝道影响范围识别[J]. 交通运输系统工程与信息, 2022, 22 (3): 53- 62 LI Yan, ZENG Mingzhe, ZHU Caihua, et al Identification of freeway ramp influence areas based on multi-point loop data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (3): 53- 62
[16]
张存保, 彭汉辉, 张珊, 等 雾天高速公路实时交通安全状态评价方法[J]. 中国安全科学学报, 2017, 27 (4): 110- 115 ZHANG Cunbao, PENG Hanhui, ZHANG Shan, et al Real-time traffic safety evaluation method for freeway in fog[J]. China Safety Science Journal, 2017, 27 (4): 110- 115
[17]
MALIN F, NORROS I, INNAMAA S Accident risk of road and weather conditions on different road types[J]. Accident Analysis and Prevention, 2019, 122 (2): 181- 188
[18]
吴兵, 翟犇, 卢建涛, 等 基于安全风险的恶劣天气下高速公路建议车速确定方法[J]. 同济大学学报: 自然科学版, 2020, 48 (11): 1570- 1578 WU Bing, ZHAI Ben, LU Jiantao, et al Determination of freeway recommended speed based on safety risk under adverse weather conditions[J]. Journal of Tongji University: Natural Science, 2020, 48 (11): 1570- 1578
[19]
吕能超, 彭凌枫, 吴超仲, 等 基于视频轨迹参数的边缘率减速标线驾驶行为效果评价方法[J]. 安全与环境学报, 2021, 21 (2): 461- 469 LV Nengchao, PENG Lingfeng, WU Chaozhong, et al Valuative judgment of the driving behaviors of the edge rate deceleration bars based on the video trajectory parameters[J]. Journal of Safety and Environment, 2021, 21 (2): 461- 469
[20]
YUAN J, ABDELATY M, WANG L, et al Utilizing bluetooth and adaptive signal control data for real-time safety analysis on urban arterials[J]. Transportation Research Part C: Emerging Technologies, 2018, 97 (5): 114- 127
[21]
杨飞, 姜海航, 刘好德, 等 基于GPS轨迹数据的不同交通状态下交通方式识别流程优化方法[J]. 交通运输系统工程与信息, 2020, 20 (4): 83- 89 YANG Fei, JIANG Haihang, LIU Haode, et al Procedure optimization method based on GPS trajectory data for transportation mode recognition under different traffic conditions[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (4): 83- 89